Microfluidics for Biologists Fundamentals and Applications

(National Geographic (Little) Kids) #1

References



  1. Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip
    platforms: requirements, characteristics and applications. Chem Soc Rev 39(3):1153–1182

  2. Valones MAA, Guimar~aes RL, Brand~ao LAC, de Souza PRE, de Albuquerque Tavares
    Carvalho A, Crovela S (2009) Principles and applications of polymerase chain reaction in
    medical diagnostic fields: a review. Braz J Microbiol 40(1):1–11

  3. Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Digital microfluidics for cell-based
    assays. Lab Chip 8(4):519–526

  4. Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H, Sato K (1990) Design of an open-
    tubular column liquid chromatograph using silicon chip technology. Sens Actuators B Chem 1
    (1):249–255

  5. Aa M, Graber N, Widmer HA~M (1990) Miniaturized total chemical analysis systems: a novel
    concept for chemical sensing. Sens Actuators B Chem 1(1):244–248

  6. Mehling M, Tay S (2014) Microfluidic cell culture. Curr Opin Biotechnol 25:95–102

  7. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772

  8. Fernandes TG, Diogo MM, Clark DS, Dordick JS, Cabral JMS (2009) High-throughput
    cellular microarray platforms: applications in drug discovery, toxicology and stem cell
    research. Trends Biotechnol 27(6):342–349

  9. Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding
    opportunities. Science 295(5557):1009–1014

  10. Gupta K, Kim D-H, Ellison D, Smith C, Kundu A, Tuan J, Suh K-Y, Levchenko A (2010)
    Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab Chip 10
    (16):2019–2031

  11. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA,
    Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic
    stem cells. Cell 161(5):1187–1201

  12. Jung H, Chun M-S, Chang M-S (2015) Sorting of human mesenchymal stem cells by applying
    optimally designed microfluidic chip filtration. Analyst 140(4):1265–1274

  13. Kang W, Giraldo-Vela JP, Nathamgari SSP, McGuire T, McNaughton RL, Kessler JA,
    Espinosa HD (2014) Microfluidic device for stem cell differentiation and localized electropo-
    ration of postmitotic neurons. Lab Chip 14(23):4486–4495

  14. Reitinger S, Jr W, Kapferer W, Heer R, Gn L (2012) Electric impedance sensing in cell-
    substrates for rapid and selective multipotential differentiation capacity monitoring of human
    mesenchymal stem cells. Biosens Bioelectron 34(1):63–69

  15. Gross PG, Kartalov EP, Scherer A, Weiner LP (2007) Applications of microfluidics for
    neuronal studies. J Neurol Sci 252(2):135–143

  16. Farinas J, Chow AW, Wada HG (2001) A microfluidic device for measuring cellular mem-
    brane potential. Anal Biochem 295(2):138–142

  17. Grant SC, Aiken NR, Plant HD, Gibbs S, Mareci TH, Webb AG, Blackband SJ (2000) NMR
    spectroscopy of single neurons. Magn Reson Med 44(1):19–22

  18. Massin C, Vincent F, Homsy A, Ehrmann K, Boero G, Besse PA, Daridon A, Verpoorte E, De
    Rooij NF, Popovic RS (2003) Planar microcoil-based microfluidic NMR probes. J Magn
    Reson 164(2):242–255

  19. Huang Y, Williams JC, Johnson SM (2012) Brain slice on a chip: opportunities and challenges
    of applying microfluidic technology to intact tissues. Lab Chip 12(12):2103–2117

  20. Scott A, Weir K, Easton C, Huynh W, Moody WJ, Folch A (2013) A microfluidic microelec-
    trode array for simultaneous electrophysiology, chemical stimulation, and imaging of brain
    slices. Lab Chip 13(4):527–535

  21. Mauleon G, Fall CP, Eddington DT (2012) Precise spatial and temporal control of oxygen
    withinin vitrobrain slices via microfluidic Gas channels. PLoS One 7(8):e43309


8 Biological Applications of Microfluidics System 217

Free download pdf