- CHILLING INJURY IN TOMATO FRUIT 273
Madhavi, D.L., and D.H. Salunkhe. 1998. Tomato. p. 171–201. In: D.K. Salunkhe and S.S.
Kadam (eds.), Handbook of vegetable science and technology: Production, composition,
storage and processing. Marcel Dekker, New York.
Malacrida, C., E.M. Valle, and S.B. Boggio. 2006. Postharvest chilling induces oxidative
stress response in the dwarf tomato cultivar ‘Micro-Tom’. Physiol. Plant. 127:10–18.
Manganaris, G.A., A.R. Vicente, C.H. Crisosto, and J.M. Labavitch. 2008. Cell wall modifi-
cations in chilling-injured plum fruitPrunus salicina. Postharvest Biol. Technol. 48:77–
83.
Marangoni, A.G., R.L. Jackman, and D.W. Stanley. 1995. Chilling-associated softening of
tomato fruit is related to increased pectinmethylesterase activity. J. Food Sci. 60:1277–
1281.
Marangoni, A.G., T. Palma, and D.W. Stanley. 1996. Membrane effects in postharvest phys-
iology. Postharvest Biol. Technol. 7:193–217.
Marangoni, A.G., A.K. Smith, R.Y. Yada, and D.W. Stanley. 1989. Ultrastructural changes
associated with chilling injury in mature-green tomato fruit. J. Am. Soc. Hort. Sci.
114:958–962.
Mathieu, S., V.D. Cin, Z. Fei, H. Li, P. Bliss, M.G. Taylor, H.J. Klee, and D.M. Tieman.
- Flavour compounds in tomato fruits: Identification of loci and potential pathways
affecting volatile composition. J. Expt. Bot. 60:325–337.
Maul, F., S.A. Sargent, C.A. Sims, E.A. Baldwin, M.O. Balaban, and D.J. Huber. 2000.
Tomato flavour and aroma quality as affected by storage temperature. J. Food Sci.
65:1228–1237.
McDonald, R.E., T.T. Hatton, and R.H. Cubbedge. 1985. Chilling injury and decay of
lemons as affected by ethylene, low temperature, and optimal storage. HortScience
20:92–93.
McDonald, R.E., T.G. McCollum, and E.A. Baldwin. 1996. Prestorage heat treatments
influence free sterols and flavour volatiles of tomatoes stored at chilling temperature. J.
Am. Soc. Hort. Sci. 121:531–536.
McDonald, R.E., T.G. McCollum, and E.A. Baldwin. 1999. Temperature of water heat treat-
ments influences tomato fruit quality following low-temperature storage. Postharvest
Biol. Technol. 16:147–155.
Minorsky, P.V. 1985. An heuristic hypothesis of chilling injury in plants: A role for cal-
cium as the primary physiological transducer of injury. Plant Cell Environ. 8:75–94.
Mir, N., M. Canoles, and R. Beaudry. 2004. Inhibiting tomato ripening with 1-
methylcyclopropene. J. Am. Soc. Hort. Sci. 129:112–120.
Moline, H.E. 1976. Ultrastructural changes associated with chilling of tomato fruit. Phy-
topathology 66:617–624.
Moneruzzaman, K.M., A. Hossain, W. Sani, and M. Saifuddin. 2008. Effect of stages of
maturity and ripening conditions on the biochemical characteristics of tomato. Am. J.
Biochem. Biotechnol. 4:336–344.
Murata, T. 1990. Relation of chilling stress to membrane permeability. p. 201–209. In: C.Y.
Wang (ed.), Chilling injury of horticultural crops. CRC Press, Boca Raton, FL.
Murata, N., O. Ishizaki-Nishizawa, S. Higashi, H. Hayashi, Y. Tasaka, and I. Nishida. 1992.
Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–
Murata, N., and I. Nishida. 1990. Lipids in relation to chilling sensitivity of plants. p. 181–
- In: C.Y. Wang (ed.), Chilling injury of horticultural crops. CRC Press, Boca Raton,
FL.
Nishida, I., and N. Murata. 1996. Chilling sensitivity in plants and cyanobacteria: The
crucial contribution of membrane lipids. Annu. Rev. Plant Biol. 47:541–568.