vocabulary in melanocytes. Genome Res 22
(11):2290–2301.https://doi.org/10.1101/
gr.139360.112
- Ding Y, Tang S, Liao SG, Jia J, Oesterreich S,
Lin Y, Tseng GC (2014) Bias correction for
selecting the minimal-error classifier from
many machine learning models. Bioinformat-
ics 30(22):3152–3158.https://doi.org/10.
1093/bioinformatics/btu520
- Yang Y, Wu QM (2016) Extreme learning
machine with subnetwork hidden nodes for
regression and classification. IEEE Trans
Cybernetics 46(12):2885–2898.https://doi.
org/10.1109/TCYB.2015.2492468
- Kircher M, Stenzel U, Kelso J (2009)
Improved base calling for the Illumina
Genome Analyzer using machine learning
strategies. Genome Biol 10(8):R83.https://
doi.org/10.1186/gb-2009-10-8-r83
- Ratsch G, Sonnenburg S, Srinivasan J,
Witte H, Muller KR, Sommer RJ, Scholkopf
B (2007) Improving the Caenorhabditis ele-
gans genome annotation using machine
learning. PLoS Comput Biol 3(2):e20.
https://doi.org/10.1371/journal.pcbi.
0030020
- Chou WC, Ma Q, Yang S, Cao S, Klingeman
DM, Brown SD, Xu Y (2015) Analysis of
strand-specific RNA-seq data using machine
learning reveals the structures of transcription
units in Clostridium thermocellum. Nucleic
Acids Res 43(10):e67.https://doi.org/10.
1093/nar/gkv177
- Capriotti E, Altman RB (2011) A new
disease-specific machine learning approach
for the prediction of cancer-causing missense
variants. Genomics 98(4):310–317.https://
doi.org/10.1016/j.ygeno.2011.06.010
- Swan AL, Stekel DJ, Hodgman C, Allaway D,
Alqahtani MH, Mobasheri A, Bacardit J
(2015) A machine learning heuristic to iden-
tify biologically relevant and minimal bio-
marker panels from omics data. BMC
Genomics 16(Suppl 1):S2.https://doi.org/
10.1186/1471-2164-16-S1-S2
- Shi P, Ray S, Zhu Q, Kon MA (2011) Top
scoring pairs for feature selection in machine
learning and applications to cancer outcome
prediction. BMC Bioinformatics 12:375.
https://doi.org/10.1186/1471-2105-12-
375
- Lyons-Weiler J, Patel S, Bhattacharya S
(2003) A classification-based machine
learning approach for the analysis of
genome-wide expression data. Genome Res
13(3):503–512. https://doi.org/10.1101/
gr.104003
96. Held E, Cape J, Tintle N (2016) Comparing
machine learning and logistic regression
methods for predicting hypertension using a
combination of gene expression and next-
generation sequencing data. BMC Proc 10
(Suppl 7):141–145. https://doi.org/10.
1186/s12919-016-0020-2
97. Jamal S, Goyal S, Shanker A, Grover A (2016)
Integrating network, sequence and functional
features using machine learning approaches
towards identification of novel Alzheimer
genes. BMC Genomics 17(1):807.https://
doi.org/10.1186/s12864-016-3108-1
98. Ma B, Charkowski AO, Glasner JD, Perna NT
(2014) Identification of host-microbe interac-
tion factors in the genomes of soft
rot-associated pathogens Dickeya dadantii
3937 and Pectobacterium carotovorum
WPP14 with supervised machine learning.
BMC Genomics 15:508. https://doi.org/
10.1186/1471-2164-15-508
99. Wang X, Su X, Cui X, Ning K (2015) Meta-
Boot: a machine learning framework of taxo-
nomical biomarker discovery for different
microbial communities based on metage-
nomic data. PeerJ 3:e993.https://doi.org/
10.7717/peerj.993
- Khanna S, Tosh PK (2014) A clinician’s
primer on the role of the microbiome in
human health and disease. Mayo Clin Proc
89(1):107–114.https://doi.org/10.1016/j.
mayocp.2013.10.011
- Drenthen MAM, Jozef KFW, Proctor J
(2009) New visions of nature. Springer,
New York
- Knights D, Costello EK, Knight R (2011)
Supervised classification of human micro-
biota. FEMS Microbiol Rev 35(2):343–359.
https://doi.org/10.1111/j.1574-6976.
2010.00251.x
- Statnikov A, Henaff M, Narendra V,
Konganti K, Li Z, Yang L, Pei Z, Blaser MJ,
Aliferis CF, Alekseyenko AV (2013) A com-
prehensive evaluation of multicategory classi-
fication methods for microbiomic data.
Microbiome 1(1):11. https://doi.org/10.
1186/2049-2618-1-11
- Statnikov A, Aliferis CF, Tsamardinos I,
Hardin D, Levy S (2005) A comprehensive
evaluation of multicategory classification
methods for microarray gene expression can-
cer diagnosis. Bioinformatics 21(5):631–643.
https://doi.org/10.1093/bioinformatics/
bti033
- LeCun Y, Bengio Y, Hinton G (2015) Deep
learning. Nature 521(7553):436–444.
https://doi.org/10.1038/nature14539
Revisit of Machine Learning Supported Biological and Biomedical Studies 203