Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1
vocabulary in melanocytes. Genome Res 22
(11):2290–2301.https://doi.org/10.1101/
gr.139360.112


  1. Ding Y, Tang S, Liao SG, Jia J, Oesterreich S,
    Lin Y, Tseng GC (2014) Bias correction for
    selecting the minimal-error classifier from
    many machine learning models. Bioinformat-
    ics 30(22):3152–3158.https://doi.org/10.
    1093/bioinformatics/btu520

  2. Yang Y, Wu QM (2016) Extreme learning
    machine with subnetwork hidden nodes for
    regression and classification. IEEE Trans
    Cybernetics 46(12):2885–2898.https://doi.
    org/10.1109/TCYB.2015.2492468

  3. Kircher M, Stenzel U, Kelso J (2009)
    Improved base calling for the Illumina
    Genome Analyzer using machine learning
    strategies. Genome Biol 10(8):R83.https://
    doi.org/10.1186/gb-2009-10-8-r83

  4. Ratsch G, Sonnenburg S, Srinivasan J,
    Witte H, Muller KR, Sommer RJ, Scholkopf
    B (2007) Improving the Caenorhabditis ele-
    gans genome annotation using machine
    learning. PLoS Comput Biol 3(2):e20.
    https://doi.org/10.1371/journal.pcbi.
    0030020

  5. Chou WC, Ma Q, Yang S, Cao S, Klingeman
    DM, Brown SD, Xu Y (2015) Analysis of
    strand-specific RNA-seq data using machine
    learning reveals the structures of transcription
    units in Clostridium thermocellum. Nucleic
    Acids Res 43(10):e67.https://doi.org/10.
    1093/nar/gkv177

  6. Capriotti E, Altman RB (2011) A new
    disease-specific machine learning approach
    for the prediction of cancer-causing missense
    variants. Genomics 98(4):310–317.https://
    doi.org/10.1016/j.ygeno.2011.06.010

  7. Swan AL, Stekel DJ, Hodgman C, Allaway D,
    Alqahtani MH, Mobasheri A, Bacardit J
    (2015) A machine learning heuristic to iden-
    tify biologically relevant and minimal bio-
    marker panels from omics data. BMC
    Genomics 16(Suppl 1):S2.https://doi.org/
    10.1186/1471-2164-16-S1-S2

  8. Shi P, Ray S, Zhu Q, Kon MA (2011) Top
    scoring pairs for feature selection in machine
    learning and applications to cancer outcome
    prediction. BMC Bioinformatics 12:375.
    https://doi.org/10.1186/1471-2105-12-
    375

  9. Lyons-Weiler J, Patel S, Bhattacharya S
    (2003) A classification-based machine
    learning approach for the analysis of
    genome-wide expression data. Genome Res
    13(3):503–512. https://doi.org/10.1101/
    gr.104003
    96. Held E, Cape J, Tintle N (2016) Comparing
    machine learning and logistic regression
    methods for predicting hypertension using a
    combination of gene expression and next-
    generation sequencing data. BMC Proc 10
    (Suppl 7):141–145. https://doi.org/10.
    1186/s12919-016-0020-2
    97. Jamal S, Goyal S, Shanker A, Grover A (2016)
    Integrating network, sequence and functional
    features using machine learning approaches
    towards identification of novel Alzheimer
    genes. BMC Genomics 17(1):807.https://
    doi.org/10.1186/s12864-016-3108-1
    98. Ma B, Charkowski AO, Glasner JD, Perna NT
    (2014) Identification of host-microbe interac-
    tion factors in the genomes of soft
    rot-associated pathogens Dickeya dadantii
    3937 and Pectobacterium carotovorum
    WPP14 with supervised machine learning.
    BMC Genomics 15:508. https://doi.org/
    10.1186/1471-2164-15-508
    99. Wang X, Su X, Cui X, Ning K (2015) Meta-
    Boot: a machine learning framework of taxo-
    nomical biomarker discovery for different
    microbial communities based on metage-
    nomic data. PeerJ 3:e993.https://doi.org/
    10.7717/peerj.993

  10. Khanna S, Tosh PK (2014) A clinician’s
    primer on the role of the microbiome in
    human health and disease. Mayo Clin Proc
    89(1):107–114.https://doi.org/10.1016/j.
    mayocp.2013.10.011

  11. Drenthen MAM, Jozef KFW, Proctor J
    (2009) New visions of nature. Springer,
    New York

  12. Knights D, Costello EK, Knight R (2011)
    Supervised classification of human micro-
    biota. FEMS Microbiol Rev 35(2):343–359.
    https://doi.org/10.1111/j.1574-6976.
    2010.00251.x

  13. Statnikov A, Henaff M, Narendra V,
    Konganti K, Li Z, Yang L, Pei Z, Blaser MJ,
    Aliferis CF, Alekseyenko AV (2013) A com-
    prehensive evaluation of multicategory classi-
    fication methods for microbiomic data.
    Microbiome 1(1):11. https://doi.org/10.
    1186/2049-2618-1-11

  14. Statnikov A, Aliferis CF, Tsamardinos I,
    Hardin D, Levy S (2005) A comprehensive
    evaluation of multicategory classification
    methods for microarray gene expression can-
    cer diagnosis. Bioinformatics 21(5):631–643.
    https://doi.org/10.1093/bioinformatics/
    bti033

  15. LeCun Y, Bengio Y, Hinton G (2015) Deep
    learning. Nature 521(7553):436–444.
    https://doi.org/10.1038/nature14539


Revisit of Machine Learning Supported Biological and Biomedical Studies 203
Free download pdf