Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1
bi-profile bayes feature extraction. PLoS One 4
(3):e4920


  1. Lee TY, Chen SA, Hung HY, YY O (2011)
    Incorporating distant sequence features and
    radial basis function networks to identify ubi-
    quitin conjugation sites. PLoS One 6(3):
    e17331

  2. Hsu BK et al (2012) Incorporating evolution-
    ary information and functional domains for
    identifying RNA splicing factors in humans.
    PLoS One 6(11):e27567

  3. Xie D et al (2005) LOCSVMPSI: a web server
    for subcellular localization of eukaryotic pro-
    teins using SVM and profile of PSI-BLAST.
    Nucleic Acids Res 33(Web Server
    issue):105–110

  4. Jones DT (1999) Protein secondary structure
    prediction based on position-specific scoring
    matrices. J Mol Biol 292(2):195

  5. Altschul SF et al (1997) Gapped BLAST and
    PSI-BLAST: a new generation of protein data-
    base search programs. Nucleic Acids Res 25
    (17):3389–3402

  6. Andersen MT, Packer NH (2014) Advances in
    LC–MS/MS-based glycoproteomics: getting
    closer to system-wide site-specific mapping of
    the N- and O-glycoproteome. Biochim Bio-
    phys Acta 1844:1437–1452

  7. Mcguffin LJ, Bryson K, Jones DT (2000) The
    PSIPRED protein structure prediction server.
    Bioinformatics 16(4):404

  8. Ward JJ et al (2004) Prediction and functional
    analysis of native disorder in proteins from the
    three kingdoms of life. J Mol Biol 337(3):635

  9. Ahmad S, Gromiha MM, Sarai A (2003)
    RVP-net: online prediction of real valued
    accessible surface area of proteins from single
    sequences. Bioinformatics 19(14):1849–1851

  10. Ahmad S, Gromiha MM, Sarai A (2003) Real
    value prediction of solvent accessibility from
    amino acid sequence. Proteins 50(4):629–635
    42. Kenney JF, Mosak JL (1951), Mathematics of
    Statistics, Van Nostrand, Princeton, NJ, 2nd
    edn, pp. 36–41
    43. Kawashima S et al (2008) AAindex: amino acid
    index database, progress report 2008. Nucleic
    Acids Res 36(Database issue):202–205
    44. Tung CW, Ho SY (2008) Computational iden-
    tification of ubiquitylation sites from protein
    sequences. BMC Bioinformatics 9:310
    45. Cao DS, QS X, Liang YZ (2013) Propy: a tool
    to generate various modes of Chou’s PseAAC.
    Bioinformatics 29:960–962
    46. Du P, Gu S, Jiao Y (2014) PseAAC-General:
    fast building various modes of general form of
    Chou’s pseudo-amino acid composition for
    large-scale protein datasets. Int J Mol Sci 15
    (3):3495–3506
    47. Qiu WR, Xiao X, Lin WZ (2014) iMethyl-
    PseAAC: identification of protein methylation
    sites via a pseudo amino acid composition
    approach. Biomed Res Int 2014(12):947416
    48. Zhang Y, Liu B, Dong Q, Jin VX (2011) An
    improved profile-level domain linker propen-
    sity index for protein domain boundary predic-
    tion. Protein Pept Lett 18(1):7–16
    49. Shao J et al (2012) Systematic analysis of
    human lysine acetylation proteins and accurate
    prediction of human lysine acetylation through
    bi-relative adapted binomial score Bayes feature
    representation. Mol Biosyst 8(11):2964–2973
    50. Wee LJ et al (2010) SVM-based prediction of
    linear B-cell epitopes using Bayes feature
    extraction. BMC Genomics 11(4):S21
    51. Song L et al (2014) nDNA-prot: identification
    of DNA-binding proteins based on unbalanced
    classification. BMC Bioinformatics 15:298
    52. Li DP, Ju Y, Zou Q (2016) Protein folds pre-
    diction with hierarchical structured SVM. Curr
    Proteomics 13:79–85
    53. Schwartz D (2012) Prediction of lysine post-
    translational modifications using bioinformatic
    tools. Essays Biochem 52:165–177


246 Cangzhi Jia and Yun Zuo

Free download pdf