Computational Systems Biology Methods and Protocols.7z

(nextflipdebug5) #1

  1. Dey SS, Kester L, Spanjaard B, Bienko M, van
    Oudenaarden A (2015) Integrated genome
    and transcriptome sequencing of the same
    cell. Nat Biotechnol 33(3):285.https://doi.
    org/10.1038/nbt.3129

  2. Macaulay IC, Teng MJ, Haerty W, Kumar P,
    Ponting CP, Voet T (2016) Separation and
    parallel sequencing of the genomes and tran-
    scriptomes of single cells using G&T-seq. Nat
    Protoc 11(11):36–58. https://doi.org/10.
    1038/nprot.2016.138

  3. Macaulay IC, Haerty W, Kumar P, Li YI, Hu
    TX, Teng MJ, Goolam M, Saurat N, Coup-
    land P, Shirley LM, Smith M, Van der Aa N,
    Banerjee R, Ellis PD, Quail MA, Swerdlow
    HP, Zernicka-Goetz M, Livesey FJ, Ponting
    CP, Voet T (2015) G&T-seq: parallel
    sequencing of single-cell genomes and tran-
    scriptomes. Nat Methods 12(6):519.https://
    doi.org/10.1038/nmeth.3370

  4. Hu YJ, Huang K, An Q, Du GZ, Hu GL, Xue
    JF, Zhu XM, Wang CY, Xue ZG, Fan GP
    (2016) Simultaneous profiling of transcrip-
    tome and DNA methylome from a single
    cell. Genome Biol 17.https://doi.org/10.
    1186/s13059-016-0950-z

  5. Zong CH, Lu SJ, Chapman AR, Xie XS
    (2012) Genome-wide detection of single-
    nucleotide and copy-number variations of a
    single human cell. Science 338
    (6114):1622–1626. https://doi.org/10.
    1126/science.1229164

  6. Picelli S, Faridani OR, Bjorklund AK, Win-
    berg G, Sagasser S, Sandberg R (2014) Full-
    length RNA-seq from single cells using
    Smart-seq2. Nat Protoc 9(1):171–181.
    https://doi.org/10.1038/nprot.2014.006

  7. Laszlo AH, Derrington IM, Brinkerhoff H,
    Langford KW, Nova IC, Samson JM, Bartlett
    JJ, Pavlenok M, Gundlach JH (2013) Detec-
    tion and mapping of 5-methylcytosine and 5-
    hydroxymethylcytosine with nanopore MspA.
    Proc Natl Acad Sci U S A 110
    (47):18904–18909. https://doi.org/10.
    1073/pnas.1310240110

  8. Laszlo AH, Derrington IM, Manrao EA,
    Gundlach JH (2013) Detection and mapping
    of 5-methylcytosine and 5-hydroxymethylcy-
    tosine in short strands of ssDNA using nano-
    pore sequencing with MspA. Biophys J 104
    (2):211a

  9. Buettner F, Natarajan KN, Casale FP, Proser-
    pio V, Scialdone A, Theis FJ, Teichmann SA,
    Marioni JC, Stegie O (2015) Computational
    analysis of cell-to-cell heterogeneity in single-
    cell RNA-sequencing data reveals hidden sub-
    populations of cells. Nat Biotechnol 33
    (2):155–160.https://doi.org/10.1038/nbt.
    3102
    80. Buettner F, Pratanwanich N, Marioni JC, Ste-
    gle O (2016) Scalable latent-factor models
    applied to single-cell RNA-seq data separate
    biological drivers from confounding effects.
    bioRxiv 2016:087775
    81. Leng N, Choi J, Chu LF, Thomson JA, Kend-
    ziorski C, Stewart R (2016) OEFinder: a user
    interface to identify and visualize ordering
    effects in single-cell RNA-seq data. Bioinfor-
    matics 32(9):1408–1410. https://doi.org/
    10.1093/bioinformatics/btw004
    82. Brennecke P, Anders S, Kim JK, Kolodziejc-
    zyk AA, Zhang XW, Proserpio V, Baying B,
    Benes V, Teichmann SA, Marioni JC, Heisler
    MG (2013) Accounting for technical noise in
    single-cell RNA-seq experiments. Nat Meth-
    ods 10(11):1093–1095.https://doi.org/10.
    1038/Nmeth.2645
    83. Katayama S, Tohonen V, Linnarsson S, Kere J
    (2013) SAMstrt: statistical test for differential
    expression in single-cell transcriptome with
    spike-in normalization. Bioinformatics 29
    (22):2943–2945.https://doi.org/10.1093/
    bioinformatics/btt511
    84. Ding B, Zheng LN, Zhu Y, Li N, Jia HY, Ai
    RZ, Wildberg A, Wang W (2015) Normaliza-
    tion and noise reduction for single cell RNA-
    seq experiments. Bioinformatics 31
    (13):2225–2227.https://doi.org/10.1093/
    bioinformatics/btv122
    85. Bacher R, Chu L-F, Leng N, Gasch AP,
    Thomson JA, Stewart RM, Newton M, Kend-
    ziorski C (2016) SCnorm: a quantile-regres-
    sion based approach for robust normalization
    of single-cell RNA-seq data. bioRxiv
    2016:090167
    86. Sengupta D, Rayan NA, Lim M, Lim B, Prab-
    hakar S (2016) Fast, scalable and accurate
    differential expression analysis for single cells.
    bioRxiv 2016:049734
    87. Cole M RD, Wagner A, Ngai J, Purdom E,
    Dudoit S, Yosef N. SCONE: correcting and
    evaluating the influence of unwanted variation
    on single-cell RNA-seq data.https://niryosef.
    wordpress.com/tools/scone/
    88. Kharchenko PV, Silberstein L, Scadden DT
    (2014) Bayesian approach to single-cell differ-
    ential expression analysis. Nat Methods 11
    (7):740–U184. https://doi.org/10.1038/
    Nmeth.2967
    89. Vieth B, Ziegenhain C, Parekh S, Enard W,
    Hellmann I (2017) powsimR: power analysis
    for bulk and single cell RNA-seq experiments.
    bioRxiv 2017:117150
    90. Finak G, McDavid A, Yajima M, Deng JY,
    Gersuk V, Shalek AK, Slichter CK, Miller
    HW, McElrath MJ, Prlic M, Linsley PS, Got-
    tardo R (2015) MAST: a flexible statistical
    framework for assessing transcriptional


368 Yungang Xu and Xiaobo Zhou

Free download pdf