- Dey SS, Kester L, Spanjaard B, Bienko M, van
Oudenaarden A (2015) Integrated genome
and transcriptome sequencing of the same
cell. Nat Biotechnol 33(3):285.https://doi.
org/10.1038/nbt.3129 - Macaulay IC, Teng MJ, Haerty W, Kumar P,
Ponting CP, Voet T (2016) Separation and
parallel sequencing of the genomes and tran-
scriptomes of single cells using G&T-seq. Nat
Protoc 11(11):36–58. https://doi.org/10.
1038/nprot.2016.138 - Macaulay IC, Haerty W, Kumar P, Li YI, Hu
TX, Teng MJ, Goolam M, Saurat N, Coup-
land P, Shirley LM, Smith M, Van der Aa N,
Banerjee R, Ellis PD, Quail MA, Swerdlow
HP, Zernicka-Goetz M, Livesey FJ, Ponting
CP, Voet T (2015) G&T-seq: parallel
sequencing of single-cell genomes and tran-
scriptomes. Nat Methods 12(6):519.https://
doi.org/10.1038/nmeth.3370 - Hu YJ, Huang K, An Q, Du GZ, Hu GL, Xue
JF, Zhu XM, Wang CY, Xue ZG, Fan GP
(2016) Simultaneous profiling of transcrip-
tome and DNA methylome from a single
cell. Genome Biol 17.https://doi.org/10.
1186/s13059-016-0950-z - Zong CH, Lu SJ, Chapman AR, Xie XS
(2012) Genome-wide detection of single-
nucleotide and copy-number variations of a
single human cell. Science 338
(6114):1622–1626. https://doi.org/10.
1126/science.1229164 - Picelli S, Faridani OR, Bjorklund AK, Win-
berg G, Sagasser S, Sandberg R (2014) Full-
length RNA-seq from single cells using
Smart-seq2. Nat Protoc 9(1):171–181.
https://doi.org/10.1038/nprot.2014.006 - Laszlo AH, Derrington IM, Brinkerhoff H,
Langford KW, Nova IC, Samson JM, Bartlett
JJ, Pavlenok M, Gundlach JH (2013) Detec-
tion and mapping of 5-methylcytosine and 5-
hydroxymethylcytosine with nanopore MspA.
Proc Natl Acad Sci U S A 110
(47):18904–18909. https://doi.org/10.
1073/pnas.1310240110 - Laszlo AH, Derrington IM, Manrao EA,
Gundlach JH (2013) Detection and mapping
of 5-methylcytosine and 5-hydroxymethylcy-
tosine in short strands of ssDNA using nano-
pore sequencing with MspA. Biophys J 104
(2):211a - Buettner F, Natarajan KN, Casale FP, Proser-
pio V, Scialdone A, Theis FJ, Teichmann SA,
Marioni JC, Stegie O (2015) Computational
analysis of cell-to-cell heterogeneity in single-
cell RNA-sequencing data reveals hidden sub-
populations of cells. Nat Biotechnol 33
(2):155–160.https://doi.org/10.1038/nbt.
3102
80. Buettner F, Pratanwanich N, Marioni JC, Ste-
gle O (2016) Scalable latent-factor models
applied to single-cell RNA-seq data separate
biological drivers from confounding effects.
bioRxiv 2016:087775
81. Leng N, Choi J, Chu LF, Thomson JA, Kend-
ziorski C, Stewart R (2016) OEFinder: a user
interface to identify and visualize ordering
effects in single-cell RNA-seq data. Bioinfor-
matics 32(9):1408–1410. https://doi.org/
10.1093/bioinformatics/btw004
82. Brennecke P, Anders S, Kim JK, Kolodziejc-
zyk AA, Zhang XW, Proserpio V, Baying B,
Benes V, Teichmann SA, Marioni JC, Heisler
MG (2013) Accounting for technical noise in
single-cell RNA-seq experiments. Nat Meth-
ods 10(11):1093–1095.https://doi.org/10.
1038/Nmeth.2645
83. Katayama S, Tohonen V, Linnarsson S, Kere J
(2013) SAMstrt: statistical test for differential
expression in single-cell transcriptome with
spike-in normalization. Bioinformatics 29
(22):2943–2945.https://doi.org/10.1093/
bioinformatics/btt511
84. Ding B, Zheng LN, Zhu Y, Li N, Jia HY, Ai
RZ, Wildberg A, Wang W (2015) Normaliza-
tion and noise reduction for single cell RNA-
seq experiments. Bioinformatics 31
(13):2225–2227.https://doi.org/10.1093/
bioinformatics/btv122
85. Bacher R, Chu L-F, Leng N, Gasch AP,
Thomson JA, Stewart RM, Newton M, Kend-
ziorski C (2016) SCnorm: a quantile-regres-
sion based approach for robust normalization
of single-cell RNA-seq data. bioRxiv
2016:090167
86. Sengupta D, Rayan NA, Lim M, Lim B, Prab-
hakar S (2016) Fast, scalable and accurate
differential expression analysis for single cells.
bioRxiv 2016:049734
87. Cole M RD, Wagner A, Ngai J, Purdom E,
Dudoit S, Yosef N. SCONE: correcting and
evaluating the influence of unwanted variation
on single-cell RNA-seq data.https://niryosef.
wordpress.com/tools/scone/
88. Kharchenko PV, Silberstein L, Scadden DT
(2014) Bayesian approach to single-cell differ-
ential expression analysis. Nat Methods 11
(7):740–U184. https://doi.org/10.1038/
Nmeth.2967
89. Vieth B, Ziegenhain C, Parekh S, Enard W,
Hellmann I (2017) powsimR: power analysis
for bulk and single cell RNA-seq experiments.
bioRxiv 2017:117150
90. Finak G, McDavid A, Yajima M, Deng JY,
Gersuk V, Shalek AK, Slichter CK, Miller
HW, McElrath MJ, Prlic M, Linsley PS, Got-
tardo R (2015) MAST: a flexible statistical
framework for assessing transcriptional
368 Yungang Xu and Xiaobo Zhou