186 PAUL J. MARKWICK
Table 2. Spearman rank test rho values for environmental variables and taxonomic species diversity for each
group: all regions
n
Absolute latitude
Elevation
MAT
MART
CMM
WMM
Radiation
Cumulative T 0
Cumulative T 5
Annual precipitation
P range
Months T 10 P 40
PET
Mean annual NDVI
NDVI 1SD
Amphibians
400
-0.576
0,256
0.503
NS
0,396
0.515
NS
0.509
0.531
0.484
0.227
0.670
0.485
0.694
-0.450
Reptiles
411
-0.956
0.268
0.892
-0.358
0.768
0.879
0.825
0.903
0.926
NS
0,231
0.402
0.895
0.598
-0.882
Herptiles
411
-0.931
0.259
0.863
-0.339
0.739
0.852
0.741
0.873
0.893
NS
0.230
0.462
0.869
0.638
-0.851
Mammals
524
-0.462
0.406
0.363
NS
0.275
0.388
0.445
0.380
0.410
0.327
0,377
0.475
0.327
0.562
-0.398
Non-bat
mammals
524
-0.355
0.448
0.219
NS
NS
0.294
0.450
0.244
0.281
0.253
0.285
0.388
0.180
0.472
-0.288
Non-avian
tetrapods
400
-0.869
0.362
0.754
NS
0.591
0.803
0.733
0.824
0.803
NS
0.193
0.450
0.765
0.628
-0.768
(p < 0.0001; NS, not significant, p > 0.0001)
Table 3. Spearman rank test rho values for environmental variables and non-avian tetrapod species diversity by
region
n
Absolute latitude
Elevation
MAT
MART
CMM
WMM
Radiation
Cumulative T 0
Cumulative T 5
Annual precipitation
P range
Months T 10 P 40
PET
Mean annual NDVI
NDVI 1SD
South
America
_
_
_
_
_
_
_
_
_
_
_
__
___
North
America
144
-0.919
0.345
0.891
-0.451
0.805
0.899
NS
0.906
0.910
0.376
NS
0.688
0.895
0.780
-0.858
Europe
204
-0.688
0.478
0,484
NS
NS
0.639
NS
0.504
0.586
NS
NS
0.462
0.539
0.662
-0.622
Arabia
_
_
- _
_
- _
__
Southern
Africa
12
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
Australia
40
-0.617
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
(p < 0.0001; NS, not significant, p > 0.0001)
pattern is consistent with their dependence on
both available water and energy (as tempera-
ture). Such dependence is reflected in the
highest correlations in Table 2 being with combi-
nations of temperature and precipitation
(compare with Fig. 4g). Negative difference
vegetation index; (NDVI, Fig. 4i,j) is a satellite-
derived proxy for net primary productivity
(Goward et al 1985; Goward & Dye 1987; Cihlar
et al 1991), which Lottes & Ziegler (1994) have
shown closely correlates with the number of
months with mean temperatures greater than
10°C and mean precipitation greater than 40 mm
(as a proxy for effective 'growing season'). If this
is the case, then plants, which also depend on
incident energy and water, should show a similar
diversity pattern to amphibians, and this is what
is observed (at least for tree species; Fig. 8).
O'Brien (1993) has shown that climate provides
the first-order explanation for plant species