Computational Drug Discovery and Design

(backadmin) #1
nonequilibrium measurements using
maximum-likelihood methods. Phys Rev Lett
91(14):140601


  1. Shirts MR, Chodera JD (2008) Statistically
    optimal analysis of samples from multiple equi-
    librium states. J Chem Phys 129:124105

  2. Paliwal H, Shirts MR (2011) A benchmark test
    set for alchemical free energy transformations
    and its use to quantify error in common free
    energy methods. J Chem Theory Comput 7
    (12):4115–4134

  3. Abraham MJ, Murtola T, Schulz R, Pa ́ll S,
    Smith JC, Hess B, Lindahl E (2015) GRO-
    MACS: high performance molecular simula-
    tions through multi-level parallelism from
    laptops to supercomputers. SoftwareX
    1–2:19–25

  4. Homeyer N, Gohlke H (2013) FEW: a work-
    flow tool for free energy calculations of ligand
    binding. J Comput Chem 34(11):965–973

  5. Liu P, Dehez F, Cai W, Chipot C (2012) A
    toolkit for the analysis of free-energy perturba-
    tion calculations. J Chem Theory Comput 8
    (8):2606–2616

  6. Pham TT, Shirts MR (2011) Identifying low
    variance pathways for free energy calculations
    of molecular transformations in solution phase.
    J Chem Phys 135(3):034114

  7. Klimovich P, Shirts M, Mobley D (2015)
    Guidelines for the analysis of free energy calcu-
    lations. J Comput Aided Mol Des 29
    (5):397–411

  8. Case DA, Betz RM, Cerutti DS, Cheatham TE
    III, Darden TA, Duke RE, Giese TJ, Gohlke H,
    Goetz AW, Homeyer N, Izadi S, Janowski P,
    Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P,
    Lin C, Luchko T, Luo R, Madej BD,
    Mermelstein D, Merz KM, Monard G,
    Nguyen H, Nguyen HT, Omelyan I,
    Onufriev A, Roe DR, Roitberg A, Sagui C,
    Simmerling CL, Botello-Smith WM, Swails J,
    Walker RC, Wang J, Wolf RM, Wu X, Xiao L,
    Kollman PA (2016) AMBER 2016. University
    of California, San Francisco

  9. Boresch S, Tettinger F, Leitgeb M, Karplus M
    (2003) Absolute binding free energies: a quan-
    titative approach for their calculation. J Phys
    Chem B 107(35):9535–9551

  10. Mobley DL, Chodera JD, Dill KA (2006) On
    the use of orientational restraints and symme-
    try corrections in alchemical free energy calcu-
    lations. J Chem Phys 125(8):084902

  11. Evoli S, Mobley DL, Guzzi R, Rizzuti B
    (2016) Multiple binding modes of ibuprofen
    in human serum albumin identified by absolute
    binding free energy calculations. Phys Chem
    Chem Phys 18(47):32358–32368
    35. Cappel D, Hall ML, Lenselink EB, Beuming T,
    Qi J, Bradner J, Sherman W (2016) Relative
    binding free energy calculations applied to pro-
    tein homology models. J Chem Inf Model 56
    (12):2388–2400
    36. Mobley DL, Graves AP, Chodera JD, McRey-
    nolds AC, Shoichet BK, Dill KA (2007) Pre-
    dicting absolute ligand binding free energies to
    a simple model site. J Mol Biol 371
    (4):1118–1134
    37. Mobley DL (2012) Let’s get honest about
    sampling. J Comput Aided Mol Des 26
    (1):93–95
    38. Mobley DL, Klimovich PV (2012) Perspective:
    alchemical free energy calculations for drug
    discovery. J Chem Phys 137(23):230901
    39. Phillips JC, Braun R, Wang W, Gumbart J,
    Tajkhorshid E, Villa E, Chipot C, Skeel RD,
    Kale L, Schulten K (2005) Scalable molecular
    dynamics with NAMD. J Comput Chem
    26:1781–1802
    40. Hornak V, Abel R, Okur A, Strockbine B,
    Roitberg A, Simmerling C (2006) Comparison
    of multiple Amber force fields and develop-
    ment of improved protein backbone para-
    meters. Proteins 65(3):712–725
    41. Lindorff-Larsen K, Piana S, Palmo K,
    Maragakis P, Klepeis J, Dror R, Shaw D
    (2010) Improved side-chain torsion potentials
    for the Amber ff99SB protein force field. Pro-
    teins 78:1950–1958
    42. Maier JA, Martinez C, Kasavajhala K,
    Wickstrom L, Hauser KE, Simmerling C
    (2015) ff14SB: improving the accuracy of pro-
    tein side chain and backbone parameters from
    ff99SB. J Chem Theory Comput 11
    (8):3696–3713
    43. MacKerell AD, Bashford D, Bellott M, Dun-
    brack RL, Evanseck JD, Field MJ, Fischer S,
    Gao J, Guo H, Ha S, Joseph-McCarthy D,
    Kuchnir L, Kuczera K, Lau FTK, Mattos C,
    Michnick S, Ngo T, Nguyen DT, Prodhom B,
    Reiher WE, Roux B, Schlenkrich M, Smith JC,
    Stote R, Straub J, Watanabe M, Wio ́rkiewicz-
    Kuczera J, Yin D, Karplus M (1998) All-atom
    empirical potential for molecular modeling and
    dynamics studies of proteins. J Phys Chem B
    102(18):3586–3616
    44. Mackerell AD (2004) Empirical force fields for
    biological macromolecules: overview and
    issues. J Comput Chem 25(13):1584–1604
    45. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J,
    Feig M, MacKerell AD (2012) Optimization of
    the additive CHARMM all-atom protein force
    field targeting improved sampling of the back-
    bone φ, ψ and side-chain χ(1) and


Absolute Alchemical Free Energy 229
Free download pdf