Computational Drug Discovery and Design

(backadmin) #1

  1. Zacharias M (2003) Protein-protein docking
    with a reduced protein model accounting for
    side-chain flexibility. Protein Sci Publ Protein
    Soc 12:1271–1282. https://doi.org/10.
    1110/ps.0239303

  2. Schneidman-Duhovny D, Inbar Y, Nussinov R,
    Wolfson HJ (2005) PatchDock and Symm-
    Dock: servers for rigid and symmetric docking.
    Nucleic Acids Res 33:W363–W367.https://
    doi.org/10.1093/nar/gki481

  3. Gabb HA, Jackson RM, Sternberg MJ (1997)
    Modelling protein docking using shape com-
    plementarity, electrostatics and biochemical
    information. J Mol Biol 272:106–120.
    https://doi.org/10.1006/jmbi.1997.1203

  4. Vakser IA (1997) Evaluation of GRAMM
    low-resolution docking methodology on the
    hemagglutinin-antibody complex. Proteins
    (Suppl 1):226–230

  5. Tovchigrechko A, Vakser IA (2006) GRAMM-
    X public web server for protein-protein dock-
    ing. Nucleic Acids Res 34:W310–W314.
    https://doi.org/10.1093/nar/gkl206

  6. Katchalski-Katzir E, Shariv I, Eisenstein M et al
    (1992) Molecular surface recognition: deter-
    mination of geometric fit between proteins
    and their ligands by correlation techniques.
    Proc Natl Acad Sci U S A 89:2195–2199

  7. Berchanski A, Shapira B, Eisenstein M (2004)
    Hydrophobic complementarity in protein-
    protein docking. Proteins 56:130–142.
    https://doi.org/10.1002/prot.20145

  8. Heifetz A, Katchalski-Katzir E, Eisenstein M
    (2002) Electrostatics in protein-protein dock-
    ing. Protein Sci Publ Protein Soc 11:571–587

  9. Mandell JG, Roberts VA, Pique ME et al
    (2001) Protein docking using continuum elec-
    trostatics and geometric fit. Protein Eng
    14:105–113

  10. Roberts VA, Thompson EE, Pique ME et al
    (2013) DOT2: macromolecular docking with
    improved biophysical models. J Comput Chem
    34:1743–1758.https://doi.org/10.1002/jcc.
    23304

  11. Wiehe K, Pierce B, Mintseris J et al (2005)
    ZDOCK and RDOCK performance in
    CAPRI rounds 3, 4, and 5. Proteins
    60:207–213. https://doi.org/10.1002/prot.
    20559

  12. Kozakov D, Brenke R, Comeau SR, Vajda S
    (2006) PIPER: an FFT-based protein docking
    program with pairwise potentials. Proteins
    65:392–406. https://doi.org/10.1002/prot.
    21117

  13. Zhang C, Lai L (2011) SDOCK: a global
    protein-protein docking program using step-
    wise force-field potentials. J Comput Chem


32:2598–2612. https://doi.org/10.1002/
jcc.21839


  1. Comeau SR, Gatchell DW, Vajda S, Camacho
    CJ (2004) ClusPro: a fully automated algo-
    rithm for protein-protein docking. Nucleic
    Acids Res 32:W96–W99.https://doi.org/10.
    1093/nar/gkh354

  2. Comeau SR, Kozakov D, Brenke R et al (2007)
    ClusPro: performance in CAPRI rounds 6-11
    and the new server. Proteins 69:781–785.
    https://doi.org/10.1002/prot.21795

  3. Ritchie DW (2003) Evaluation of protein
    docking predictions using Hex 3.1 in CAPRI
    rounds 1 and 2. Proteins 52:98–106.https://
    doi.org/10.1002/prot.10379

  4. Garzon JI, Lope ́z-Blanco JR, Pons C et al
    (2009) FRODOCK: a new approach for fast
    rotational protein-protein docking. Bioinfor-
    matics 25:2544–2551. https://doi.org/10.
    1093/bioinformatics/btp447

  5. Dominguez C, Boelens R, Bonvin AMJJ
    (2003) HADDOCK: a protein-protein dock-
    ing approach based on biochemical or biophys-
    ical information. J Am Chem Soc
    125:1731–1737. https://doi.org/10.1021/
    ja026939x

  6. de Vries SJ, van Dijk ADJ, Krzeminski M et al
    (2007) HADDOCK versus HADDOCK: new
    features and performance of HADDOCK2.0
    on the CAPRI targets. Proteins 69:726–733.
    https://doi.org/10.1002/prot.21723

  7. Hwang H, Vreven T, Janin J, Weng Z (2010)
    Protein-protein docking benchmark version
    4.0. Proteins 78:3111–3114. https://doi.
    org/10.1002/prot.22830

  8. Vajda S (2005) Classification of protein com-
    plexes based on docking difficulty. Proteins
    60:176–180. https://doi.org/10.1002/prot.
    20554

  9. Selent J, Kaczor AA, Guixa`-Gonza ́lez R et al
    (2013) Rational design of the survivin/CDK4
    complex by combining protein-protein dock-
    ing and molecular dynamics simulations. J Mol
    Model 19:1507–1514. https://doi.org/10.
    1007/s00894-012-1705-8

  10. Renthal R (1999) Transmembrane and water-
    soluble helix bundles display reverse patterns of
    surface roughness. Biochem Biophys Res Com-
    mun 263:714–717. https://doi.org/10.
    1006/bbrc.1999.1439

  11. Kaczor AA, Guixa`-Gonza ́lez R, Carrio ́Petal
    (2012) Fractal dimension as a measure of sur-
    face roughness of G protein-coupled receptors:
    implications for structure and function. J Mol
    Model 18:4465–4475. https://doi.org/10.
    1007/s00894-012-1431-2


302 Agnieszka A. Kaczor et al.

Free download pdf