Produce Degradation Pathways and Prevention

(Romina) #1

Structure and Function of Complex Carbohydrates in Produce 589



  1. Tailliez, P. et al., Enhanced cellulose fermentation by an asporogenous and ethanol-
    tolerant mutant of Clostridium thermocellum, Appl. Environ. Microbiol., 55, 207, 1989.

  2. Updegraff, D. M., Semimicro determination of cellulose in biological materials, Anal.
    Biochem., 32, 420, 1969.

  3. Johnson, E.A. et al., Saccharification of complex cellulosic substrates by the cellulase
    system from Clostridium thermocellum, Appl. Environ. Microbio1., 43, 1125, 1982.

  4. Chanzy, H., Henrissat, B., and Vuong, R., Colloidal gold labelling of 1,4-β-D-glucan
    cellobiohydrolase adsorbed on cellulose substrates, FEBS Lett., 172, 193, 1983.

  5. Chanzy, H., and Henrissat, B., Unidirectional degradation of Valonia cellulose micro-
    crystals subjected Go cellulase action, FEBS Lett., 184, 285, 1985.

  6. Din, N. et al., Non-hydrolytic disruption of cellulose fibres by the binding domain
    of a bacterial cellulase, Bio/Technology, 9, 1096, 1991.

  7. Sprey, B., and Bochem, H. P., Electron microscopic observations of cellulose
    microfibril degradation by endo-cellulase from Trichoderma reesei, FEMS Microbiol.
    Lett., 78, 183, 1991.

  8. Sprey, J. and Bochem, H. P., Effect of endoglucanase and cell cellobiohydrolase from
    Trichoderma reesei on cellulose microfibril structure. FEMS Microbiol. Lett., 97, 113,
    1992.

  9. Sprey, B., and Bochem, H. P., Formation of cross-fractures in cellulose microfibril
    structure by an endo-glueanase-cellobiohydrolasc complex from Trichoderma reesei,
    FEMS Microbiol. Lett., 106, 239, 1993.

  10. Joseleau. J. P., Comtat. J., and Ruel, K., Chemical structure of xylans and their
    interaction in the plant cell walls, in Progress in Biotechnology, Vol. 7, Xylans and
    Xylanases, Visser. J. et al., Eds., Elsevier, Amsterdam, 1992, pp. 1–15.

  11. Hartley. R. D., and Ford. C. W., Phenolic constituents of plant cell walls and wall
    biodegradability, in Plant Cell Wall Polymers: Biogenesis and Biodegradation, Lewis,
    N. G. and Paice, M. G., Eds., American Chemical Society, Washington. DC, 1989,
    pp. 135–145.

  12. Scalbert, A. et al., Ether linkage between phenolic acids and lignin fractions from
    wheat straw, Phytochemistry, 24, 1359, 1985.

  13. Gold, M., Wariishi, H., and Valli. K., Extracellular peroxidases involved in lignin
    degradation by the white-rot basidiomycete Phanerochate chryosporium, in Bioca-
    talysis in Agricultural Biotechnology, Whitaker. J. and Sonnet, P. E., Eds., American
    Chemical Society, Washington, DC, 1989, pp. 127–140.

  14. Biely, P., Microbial xylanolytie systems, Trends. Biotechnol., 3, 286, 1998.

  15. Coughlan. M. P. and Hazlewood, J. P., β-1,4-D-xylan-degrading enzyme systems:
    biochemistry, molecular biology, and applications, Biotechnol. Appl. Biochem., 17,
    259, 1993.

  16. Wong. K. K. Y., Tan, L. U. I., and Saddler, J. N., Multiplicity of β-1,4-xylanase in
    microorganisms: functions and applications, Microbiol. Rev., 52, 3115, 1988.

  17. Thomson. J. A., Molecular biology of xylan degradation, FEMS Microbiol. Rev., 104,
    65, 1993.

  18. Kirk. T. K., Biochemistry of lignin degradation by Phenerochaete chryosporium, in
    Biochemistry and Genetics of Cellulose Degradation, Aubert, J.-P., Beguin, P., and
    Millet, J., Eds., Academic Press, New York, 1988, pp. 315–332.

  19. Zamost, B. L., Nielsen, H. K., and Starnes, R. L., Thermostable enzymes for industrial
    applications, J. Indust. Microbiol., 8, 71, 1991.

  20. Northcote, D. H., Chemistry of the plant cell wall, Annu. Rev. Plant Physiol., 23,
    113, 1972.

Free download pdf