1.10 Complex Methods 115
Fourier integral
The Fourier integral of a functionf(x)defined in the entire interval−∞<
x<∞can also be cast in complex form:
f(x)=
∫∞
−∞
C(λ)eiλxdλ. (5)
The complex Fourier integral coefficient function is given by
C(λ)= 21 π
∫∞
−∞
f(x)e−iλxdx. (6)
It is simple to show that
C(λ)=^1
2
(
A(λ)−iB(λ)
)
, (7)
whereAandBare the usual Fourier integral coefficients. The complex Fourier
integral coefficient is often called theFourier transformof the functionf(x).
Example.
Find the complex Fourier integral representation of
f(x)=
{
1 , −a<x<a,
0 , x<|a|.
The coefficient function (or transform) offis
C(λ)= 21 π
∫a
−a
e−iλxdx= 21 πe
−iλx
−iλ
∣∣
∣∣
a
−a
= 21 πe
iλa−e−iλa
iλ =
sin(λa)
πλ.
The representation offis
f(x)=
∫∞
−∞
sin(λa)
πλ
eiλxdλ, −∞<x<∞.
Of course, atx=±a,theintegralconvergesto1/2.
This example brings out a fact about symmetry: Iff(x)is even,C(λ)is real;
iff(x)is odd,C(λ)is imaginary.
The Fourier integral or transform may be used to solve differential equations
on the interval−∞<x<∞, in much the same way that Laplace transform
is used.