116 Chapter 1 Fourier Series and Integrals
EXERCISES
1.Use the complex forman−ibn=1
π∫π−πf(x)e−inxdx, n= 0 ,to find the Fourier series of the functionf(x)=eαx, −π<x<π.2.Find the complex Fourier series for the “square wave” with period 2π:f(x)={ 1 , 0 <x<π,
− 1 , −π<x<0.3.Find the complex Fourier integral representation of the following func-
tions:
a.f(x)={
e−x, x>0,
0 , x<0;b.f(x)={
sin(x), 0 <x<π,
0 , elsewhere.
4.Find the complex Fourier integral fora.f(x)={
xe−x, 0 <x,
0 , x<0;
b.f(x)=e−α|x|sin(x).
5.Relate the functions and series that follow by using complex form and Tay-
lor series.a. 1 +∑∞
n= 1rncos(nx)= 1 −^12 −rcosrcos(x()x+)r 2 , 0 ≤r<1;b.∑∞
n= 1sin(nx)
n!=ecos(x)sin(
sin(x))
.
6.Show by integrating that
∫π−πeinxe−imxdx={
0 , n=m,
2 π, n=m,and develop the formula for the complex Fourier coefficients using this idea
of orthogonality.