116 Chapter 1 Fourier Series and Integrals
EXERCISES
1.Use the complex form
an−ibn=
1
π
∫π
−π
f(x)e−inxdx, n= 0 ,
to find the Fourier series of the function
f(x)=eαx, −π<x<π.
2.Find the complex Fourier series for the “square wave” with period 2π:
f(x)=
{ 1 , 0 <x<π,
− 1 , −π<x<0.
3.Find the complex Fourier integral representation of the following func-
tions:
a.f(x)=
{
e−x, x>0,
0 , x<0;
b.f(x)=
{
sin(x), 0 <x<π,
0 , elsewhere.
4.Find the complex Fourier integral for
a.f(x)=
{
xe−x, 0 <x,
0 , x<0;
b.f(x)=e−α|x|sin(x).
5.Relate the functions and series that follow by using complex form and Tay-
lor series.
a. 1 +
∑∞
n= 1
rncos(nx)= 1 −^12 −rcosrcos(x()x+)r 2 , 0 ≤r<1;
b.
∑∞
n= 1
sin(nx)
n!
=ecos(x)sin
(
sin(x)
)
.
6.Show by integrating that
∫π
−π
einxe−imxdx=
{
0 , n=m,
2 π, n=m,
and develop the formula for the complex Fourier coefficients using this idea
of orthogonality.