2.8 Expansion in Series of Eigenfunctions 183
(xφ′)′+λ^2( 1
x)
φ= 0 , 1 <x<b,φ( 1 )= 0 ,φ(b)= 0.
Find the expansion of the functionf(x)=xin terms of these eigenfunc-
tions. To what values does the series converge atx=1andx=b?- Ifφ 1 ,φ 2 ,...are the eigenfunctions of a regular Sturm–Liouville problem
and are orthogonal with weight functionp(x)onl<x<rand iff(x)is
sectionally smooth, then
∫r
lf^2 (x)p(x)dx=∑∞
n= 1anc^2 n,where
an=∫rlφn^2 (x)p(x)dxandcnis the coefficient offas given in the theorem. Show why this should
be true, and conclude thatcn√an→0asn→∞.- Verify that the eigenvalues and eigenfunctions of the problem
(exφ′)′+exγ^2 φ= 0 , 0 <x<a,
φ( 0 )= 0 ,φ(a)= 0
areγn^2 =(
nπ
a) 2
+^1
4
,φn(x)=exp(
−x
2)
sin(
nπx
a)
.
Find the coefficients for the expansion of the functionf(x)=1, 0<x<a,
in terms of theφn.- Ifφ 1 ,φ 2 ,...are eigenfunctions of a regular Sturm–Liouville problem, the
numbers√anare callednormalizing constants, and the functionsψn=
φn/√anare callednormalized eigenfunctions. Show that
∫r
lψn^2 (x)p(x)dx= 1 ,∫rlψn(x)ψm(x)p(x)dx= 0 , n=m.- Find the formula for the coefficients of a sectionally smooth functionf(x)
in the series
f(x)=∑∞
n= 1bnψn(x), l<x<r,where theψnare normalized eigenfunctions.