2.8 Expansion in Series of Eigenfunctions 183
(xφ′)′+λ^2
( 1
x
)
φ= 0 , 1 <x<b,
φ( 1 )= 0 ,φ(b)= 0.
Find the expansion of the functionf(x)=xin terms of these eigenfunc-
tions. To what values does the series converge atx=1andx=b?
- Ifφ 1 ,φ 2 ,...are the eigenfunctions of a regular Sturm–Liouville problem
and are orthogonal with weight functionp(x)onl<x<rand iff(x)is
sectionally smooth, then
∫r
l
f^2 (x)p(x)dx=
∑∞
n= 1
anc^2 n,
where
an=
∫r
l
φn^2 (x)p(x)dx
andcnis the coefficient offas given in the theorem. Show why this should
be true, and conclude thatcn√an→0asn→∞.
- Verify that the eigenvalues and eigenfunctions of the problem
(exφ′)′+exγ^2 φ= 0 , 0 <x<a,
φ( 0 )= 0 ,φ(a)= 0
are
γn^2 =
(
nπ
a
) 2
+^1
4
,φn(x)=exp
(
−x
2
)
sin
(
nπx
a
)
.
Find the coefficients for the expansion of the functionf(x)=1, 0<x<a,
in terms of theφn.
- Ifφ 1 ,φ 2 ,...are eigenfunctions of a regular Sturm–Liouville problem, the
numbers√anare callednormalizing constants, and the functionsψn=
φn/√anare callednormalized eigenfunctions. Show that
∫r
l
ψn^2 (x)p(x)dx= 1 ,
∫r
l
ψn(x)ψm(x)p(x)dx= 0 , n=m.
- Find the formula for the coefficients of a sectionally smooth functionf(x)
in the series
f(x)=
∑∞
n= 1
bnψn(x), l<x<r,
where theψnare normalized eigenfunctions.