1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

366 Chapter 6 Laplace Transform


L(f)=F(s)=

∫∞
0

e−stf(t)dt
L(cf(t))=cL(f(t))
L(f(t)+g(t))=L(f(t))+L(g(t))
L(f′(t))=−f( 0 )+sF(s)
L(f′′(t))=−f′( 0 )−sf( 0 )+s^2 F(s)
L(f(n)(t))=−f(n−^1 )( 0 )−sf(n−^2 )( 0 )−···−sn−^1 f( 0 )+snF(s)
L(ebtf(t))=F(s−b)
L

(∫t
0

f(t′)dt′

)
=^1 sF(s) L

( 1
tf(t)

)
=∫s∞F(s′)ds′
L(tf(t))=−dFds

Table 1 Properties of the Laplace transform

or


L

[∫t

0

f(t′)dt′

]

=^1 sL

(

f(t)

)

. (5)

Differentiation and integration with respect tosmay produce transforma-
tions of previously inaccessible functions. We need the two formulas


−de

−st
ds

=te−st,

∫∞

s

e−s′tds′=^1
t

e−st

to derive the results


L

(

tf(t)

)

=−dF(s)
ds

, L

(

1

t

f(t)

)

=

∫∞

s

F(s′)ds′. (6)

(Note that, unlessf( 0 )=0, the transform off(t)/twill not exist.) Examples
of the use of these formulas are


L

(

tsin(ωt)

)

=−dsd

(

ω
s^2 +ω^2

)

=(s (^22) +sωω (^2) ) 2 ,
L


(

sin(t)
t

)

=

∫∞

s

ds′
s′^2 + 1 =

π
2 −tan

− (^1) (s)=tan− 1


(

1

s

)

.

Significant properties of the Laplace transform are summarized in Table 1.
When a problem is solved by use of Laplace transforms, a prime difficulty
is computation of the corresponding function oft. Methods for computing
the “inverse transform”f(t)=L−^1 (F(s))include integration in the complex
plane, convolution, partial fractions (discussed in Section 6.2), and tables of

Free download pdf