1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

Chapter 6 Laplace Transform 367


f(t) F(s) f(t) F(s)

00 tk skk+! 1

(^1) s^1 ebtcos(ωt) s (^2) − 2 bss−+bb (^2) +ω 2
eat s−^1 a ebtsin(ωt) s (^2) − 2 bsω+b (^2) +ω 2
cosh(at) s (^2) −sa 2 ebttk (s−kb!)k+ 1
sinh(at) s (^2) −aa 2 eat− (^1) s(s−aa)
cos(ωt) s (^2) +sω 2 tcos(ωt) s
(^2) −ω 2
(s^2 +ω^2 )^2
sin(ωt) s (^2) +ωω 2 tsin(ωt) (s (^2) +^2 sωω (^2) ) 2
t s^12
Table 2 Laplace transforms
transforms. The last method, which involves the least work, is the most popu-
lar. The transforms in Table 2 were all calculated from the definition or by use
of formulas in this section.
EXERCISES



  1. By using linearity and the transform ofeat, compute the transform of each
    of the following functions.
    a.sinh(at);
    d.sin(ωt−φ);


b.cos(ωt);
e.e^2 (t+^1 );

c. cos^2 (ωt);
f. sin^2 (ωt).


  1. Use differentiation with respect totto find the transform of


a.teatfromL(eat),
b.sin(ωt)fromL(cos(ωt)),
c. cosh(at)fromL(sinh(at)).


  1. Compute the transform of each of the following directly from the defini-
    tion.
    a.f(t)=


{ 0 , 0 <t<a,
1 , a<t;
Free download pdf