6.2 Partial Fractions and Convolutions 375
- Solve the initial value problem
u′′+ 2 au′+u= 0 , u( 0 )=u 0 , u′( 0 )=u 1
in these three cases: 0<a<1,a=1,a>1.
- Solve these nonhomogeneous problems with zero initial conditions.
a.u′+au=1;
c. u′′+ 4 u=sin(t);
e.u′′+ 2 u′= 1 −e−t;
b. u′′+u=t;
d. u′′+ 4 u=sin( 2 t);
f. u′′−u=1.
- Complete the square in the denominator and use the shift theorem
[F(s−a)=L(eatf(t))]toinvert
U(s)=
su 0 +(u 1 + 2 au 0 )
s^2 + 2 as+ω^2.
There are three cases, corresponding to
ω^2 −a^2 > 0 , = 0 ,< 0.
- Use partial fractions to invert the following transforms.
a.^1
s^2 − 4
;
c. s((ss 2 ++^32 ));
b.^1
s^2 + 4
;
d.^4
s(s+ 1 )
.
- Prove properties (4a) and (4c) of the convolution.
- Compute the convolutionf∗gfor
a.f(t)=1,g(t)=sin(t);
b.f(t)=et,g(t)=cos(ωt);
c. f(t)=t,g(t)=sin(t).
- Demonstrate the following properties of convolution either directly or by
using Laplace transform.
a. 1 ∗f′(t)=f(t)−f( 0 );
b.(t∗f(t))′′=f(t);
c. (f∗g)′=f′∗g=f∗g′,iff( 0 )=g( 0 )=0.