438 Appendix: Mathematical References
e.Integrated Bessel function
IJ(x)=
∫x
0
J 0 (z)dz
Table of Integrals
Any letter exceptxrepresents a constant. The integration constants have been
left off.
1.Rational functions
1.1
∫ dx
h+kx=
1
kln|h+kx|
1.2
∫ dx
x^2 +a^2
=^1
a
tan−^1
(
x
a
)
1.3
∫ xdx
x^2 +a^2 =
1
2 ln
(
x^2 +a^2
)
1.4
∫ dx
x^2 −a^2
=^1
2 a
ln
∣∣
∣∣x−a
x+a
∣∣
∣∣
1.5
∫ xdx
x^2 −a^2 =
1
2 ln
∣∣
x^2 −a^2
∣∣
2.Radicals
2.1
∫ dx
√
x^2 +a^2
=ln
(
x+
√
x^2 +a^2
)
or sinh−^1
(
x
a
)
2.2
∫ xdx
√
x^2 +a^2
=
√
x^2 +a^2
2.3
∫ dx
√
x^2 −a^2
=ln
(
x+
√
x^2 −a^2
)
(x>a)
2.4
∫ xdx
√
x^2 −a^2
=
√
x^2 −a^2
2.5
∫ dx
√
a^2 −x^2
=sin−^1
(
x
a
)
(|x|<a)
2.6
∫ xdx
√
a^2 −x^2
=−
√
a^2 −x^2 (|x|<a)
3.Exponentials and hyperbolic functions
3.1
∫
ekxdx=
ekx
k