1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

440 Appendix: Mathematical References


4.13


ekxsin(λx)dx=e

kx(ksin(λx)−λcos(λx))
k^2 +λ^2

4.14


ekxcos(λx)dx=

ekx(kcos(λx)+λsin(λx))
k^2 +λ^2

4.15


sinh(kx)sin(λx)dx=kcosh(kx)sin(λx)−λsinh(kx)cos(λx)
k^2 +λ^2

4.16


sinh(kx)cos(λx)dx=kcosh(kx)cos(λx)+λsinh(kx)sin(λx)
k^2 +λ^2

4.17


cosh(kx)sin(λx)dx=ksinh(kx)sin(λx)−λcosh(kx)cos(λx)
k^2 +λ^2

4.18


cosh(kx)cos(λx)dx=ksinh(kx)cos(λx)+λcosh(kx)sin(λx)
k^2 +λ^2
5.Bessel functions
5.1


xJ 0 (λx)dx=

xJ 1 (λx)
λ
5.2


x^2 J 0 (λx)dx=x

(^2) J 1 (λx)
λ
+xJ^0 (λx)
λ^2


−^1

λ^3

IJ(λx)^1

5.3


J 1 (λx)dx=−

J 0 (λx)
λ
5.4


xn+^1 Jn(λx)dx=x

n+ (^1) Jn+ 1 (λx)
λ
5.5



Jn(λx)dx
xn−^1

=−Jn−^1 (λx)
λxn−^1
5.6


J^20 (λx)xdx=x

2
2

[

J^20 (λx)+J 12 (λx)

]

5.7


J^2 n(λx)xdx=x

2
2

[

Jn^2 (λx)−Jn− 1 (λx)Jn+ 1 (λx)

]

=x

2
2

[

Jn′(λx)

] 2

+

(x 2
2

− n

2
2 λ^2

)[

Jn(λx)

] 2

6.Legendre polynomials

6.1


Pn(x)dx=−−(^1 −x

(^2) )
n(n+ 1 )
P′n(x)


6.2


xPn(x)dx= (^1 −x

(^2) )
(n+ 2 )(n− 1 )


(

Pn(x)−xP′n(x)

)

.

(^1) See Calculus 5e.

Free download pdf