446 Answers to Odd-Numbered Exercises
Finallyu(x)=(U−^3 /^2 +( 3 / 2 )√
2 γ^2 / 5 x)−^2 /^3.- 459.77 rad/s.
29.u(x)=C 0 e−ax.
31.w(x)= P
2 γ^2[ 1
4
−x^2 +cosh(γx)−cosh(γ/^2 )
γsinh(γ/ 2 )]
.
- Thesolutionbreaksdown(bucklingoccurs)iftan(λ/ 2 )=γ/2.
Chapter 1
Section 1.1
- a. 2
(
sin(x)−^1
2sin( 2 x)+^1
3sin( 3 x)−···)
;
b.π
2−^4
π(
cos(x)+^1
9cos( 3 x)+^1
25cos( 5 x)+···)
;
c.^1
2+^2
π(
sin(x)+^1
3sin( 3 x)+^1
5sin( 5 x)+···)
;
d.^2
π−^4
π( 1
3
cos( 2 x)+^1
15cos( 4 x)+^1
35cos( 6 x)+···)
.
3.f(x+p)= 1 =f(x)for anypand allx.- Ifcis a multiple ofp,thegraphoff(x)betweencandc+pis the same
as that between 0 andp.Otherwise,letkbe the integer such thatkplies
betweencandc+p:
∫c+p
cf(x)dx=∫kpcf(x)dx+∫c+pkpf(x)dx=∫pc∗f(x)dx+∫c∗0f(x)dx,wherec∗=c−(k− 1 )p.- a. cos^2 (x)=
1
2 +
1
2 cos(^2 x);
b. sin(
x−π
6)
=cos(π
6)
sin(x)−sin(π
6)
cos(x);c. sin(x)cos( 2 x)=−^1
2sin(x)+^1
2sin( 3 x).Section 1.2
- a.
1
2 −
4
π^2[
cos(πx)+1
9 cos(^3 πx)+1
25 cos(^5 πx)+···