Chapter 1 451
b.sin(x)
x=
∫∞
0A(λ)cos(λx)dλ,whereA(λ)={ 1 , 0 <x<1,
0 , 1 <x.- a.A(λ)≡0,B(λ)=2sin(λπ )
π( 1 −λ^2 )
;
b.A(λ)=^1 +cos(λπ )
π( 1 −λ^2 ),B(λ)= sin(λπ )
π( 1 −λ^2 );
c.A(λ)=^2 (^1 π(+ 1 cos−λ(λπ )) (^2) ) ,B(λ)≡0.
- Change variable fromxtoλwithx=λz.
Section 1.10
1.eαx= 2 sinhπ(απ )(
1
2 α+∑∞
n= 1(− 1 )n
α^2 +n^2(
αcos(nx)−nsin(nx))
)
.
3.f(x)=∫∞
−∞C(λ)eiλxdλ.a.C(λ)=^1
2 π( 1 +iλ);b.C(λ)=^1 +e−iλπ
2 π( 1 −λ^2 ).
- a. 1+
∑∞
n= 1rncos(nx)=Re∑∞
0(
reix)n
=Re^1
1 −reix;
b.∑∞
n= 1sin(nx)
n!=Im∑∞
n= 1einx
n!=Im exp(
eix)
.
- a.f(x)=2sin(x)
x
;b.f(x)=^2
1 +x^2.
Section 1.11
1.u(t)=A 0 +∑∞
n= 1Ancos(nt/ 2 )+Bnsin(nt/ 2 ),A 0 =
1
2. 08 , An=0. 4 /π
( 1. 04 −n^2 )^2 +( 0. 4 n)^2 ,Bn=−1
nπ1. 04 −n^2
( 1. 04 −n^2 )^2 +( 0. 4 n)^2.3.u(x)=∑∞
n= 1Bnsin(nπx/L),Bn=8 Ksin(nπ/ 2 )
((nπ/L)^2 +γ^2 )n^2 π^2 ,
K=w/EI,γ^2 =T/EI.