452 Answers to Odd-Numbered Exercises
Chapter 1 Miscellaneous Exercises
1.f(x)=
∑∞
n= 1
bnsin(nx),
bn=
{ 0 , neven,
4sin(nα)
παn^2 , nodd.
- Yes. Asα→0, sin(nα)/nα→1.
5.f(x)=
∑∞
n= 1
bnsin(nπx/a),
bn=π^2 h 2 sin(nn 2 πα)
(
1
α+
1
1 −α
)
.
- a.bn=0,an=0,a 0 =1;
b.
∑∞
n= 1
bnsin(nπx/a),bn=^2 (^1 −cosnπ(nπ));
c. and d. same as a;
e. same as b;
f.a 0 +
∑∞
n= 1
ancos(nπx/a)+bnsin(nπx/a),
a 0 =^1
2
,an=0,bn=^1 −cos(nπ)
nπ
.
9.f(x)=a 0 +
∑∞
n= 1
ancos(nπx/a)+bnsin(nπx/a),
a 0 =
1
2 a,an=−
2 a( 1 −cos(nπ))
n^2 π^2 ,bn=−
2 acos(nπ)
nπ ,
x=−a, −a/ 2 , 0 , a, 2 a,
sum=a, 0 , 0 , a, 0.
11.f(x)=a 0 +
∑∞
n= 1
ancos(nx),
a 0 =^34 ,an=sin(nnππ/^2 ),
x= 0 ,π/ 2 ,π, 3 π/ 2 , 2 π,
sum= 1 ,