452 Answers to Odd-Numbered Exercises
Chapter 1 Miscellaneous Exercises
1.f(x)=∑∞
n= 1bnsin(nx),bn={ 0 , neven,
4sin(nα)
παn^2 , nodd.- Yes. Asα→0, sin(nα)/nα→1.
5.f(x)=∑∞
n= 1bnsin(nπx/a),bn=π^2 h 2 sin(nn 2 πα)(
1
α+1
1 −α)
.
- a.bn=0,an=0,a 0 =1;
b.∑∞
n= 1bnsin(nπx/a),bn=^2 (^1 −cosnπ(nπ));c. and d. same as a;
e. same as b;f.a 0 +∑∞
n= 1ancos(nπx/a)+bnsin(nπx/a),a 0 =^1
2,an=0,bn=^1 −cos(nπ)
nπ.
9.f(x)=a 0 +∑∞
n= 1ancos(nπx/a)+bnsin(nπx/a),a 0 =1
2 a,an=−2 a( 1 −cos(nπ))
n^2 π^2 ,bn=−2 acos(nπ)
nπ ,
x=−a, −a/ 2 , 0 , a, 2 a,
sum=a, 0 , 0 , a, 0.11.f(x)=a 0 +∑∞
n= 1ancos(nx),a 0 =^34 ,an=sin(nnππ/^2 ),x= 0 ,π/ 2 ,π, 3 π/ 2 , 2 π,
sum= 1 ,