Chapter 1 451
b.sin(x)
x
=
∫∞
0
A(λ)cos(λx)dλ,whereA(λ)=
{ 1 , 0 <x<1,
0 , 1 <x.
- a.A(λ)≡0,B(λ)=2sin(λπ )
π( 1 −λ^2 )
;
b.A(λ)=^1 +cos(λπ )
π( 1 −λ^2 )
,B(λ)= sin(λπ )
π( 1 −λ^2 )
;
c.A(λ)=^2 (^1 π(+ 1 cos−λ(λπ )) (^2) ) ,B(λ)≡0.
- Change variable fromxtoλwithx=λz.
Section 1.10
1.eαx= 2 sinhπ(απ )
(
1
2 α+
∑∞
n= 1
(− 1 )n
α^2 +n^2
(
αcos(nx)−nsin(nx)
)
)
.
3.f(x)=
∫∞
−∞
C(λ)eiλxdλ.
a.C(λ)=^1
2 π( 1 +iλ)
;b.C(λ)=^1 +e
−iλπ
2 π( 1 −λ^2 )
.
- a. 1+
∑∞
n= 1
rncos(nx)=Re
∑∞
0
(
reix
)n
=Re^1
1 −reix
;
b.
∑∞
n= 1
sin(nx)
n!
=Im
∑∞
n= 1
einx
n!
=Im exp
(
eix
)
.
- a.f(x)=2sin(x)
x
;b.f(x)=^2
1 +x^2
.
Section 1.11
1.u(t)=A 0 +
∑∞
n= 1
Ancos(nt/ 2 )+Bnsin(nt/ 2 ),
A 0 =
1
2. 08 , An=
0. 4 /π
( 1. 04 −n^2 )^2 +( 0. 4 n)^2 ,
Bn=−
1
nπ
1. 04 −n^2
( 1. 04 −n^2 )^2 +( 0. 4 n)^2.
3.u(x)=
∑∞
n= 1
Bnsin(nπx/L),Bn=
8 Ksin(nπ/ 2 )
((nπ/L)^2 +γ^2 )n^2 π^2 ,
K=w/EI,γ^2 =T/EI.