Chapter 2 457
c.A=(S 1 −S 0 )/a,B=S 0 .IfS 0 =S 1 ,then∂∂ut=kAfor allt.7.φ′′+λ^2 φ=0, 0<x<a,
φ( 0 )=0,φ(a)=0.
Solution:φn=sin(λnx),λn=nπ/a(n= 1 , 2 ,...).- The series
∑∞
n= 1|An(t 1 )|converges.- No.u( 0 ,t)is constant ifut( 0 ,t)=0.
Section 2.5
1.v(x,t)=T 0.3.u(x,t)=T 0 +∑∞
n= 1bnsin(λnx)exp(
−λ^2 nkt)
,λn=( 2 n− 1 )π/ 2 a,bn=8 T(− 1 )n+^1
π^2 ( 2 n− 1 )^2 −4 T 0
π( 2 n− 1 ).- The steady-state solution isv(x)=T 0 −Tx(x− 2 a)/ 2 a^2. The transient
satisfies Eqs. (5)–(8) with
g(x)=T 0 −v(x)=Tx(x−^2 a)
2 a^2.
7.u(x,t)=T 0 +∑∞
n= 1cncos(λnx)exp(
−λ^2 nkt)
,
λn=( 2 n− 1 )π/ 2 a, cn=4 (T 1 −T 0 )(− 1 )n+^1
π( 2 n− 1 ).9.u(x,t)=T 1 cos(πx/ 2 a)exp(
−
(
π
2 a) 2
kt)
.
- The graph ofGin the interval 0<x< 2 ais made by reflecting the graph
ofgin the linex=a(likeanevenextension). - a.u(x,t)=T 0 +
∑∞
n= 1bnsin(λnx)exp(
−λ^2 nkt)
,λn=( 2 n− 1 )π/ 2 a,bn=1
a∫ 2 a0g(x)sin(nπx
2 a)
dx.