1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

458 Answers to Odd-Numbered Exercises


In the integral forbn, break the interval of integration ata; in the second
integral, make the change of variabley= 2 a−x. The two integrals cancel
ifnis even, and the coefficient is the same as Eq. (18) ifnis odd.
b. In the solution of Eqs. (1)–(4), the eigenfunctionφ(x)=sin(( 2 n−
1 )πx/ 2 a)has the propertyφ( 2 a−x)=φ(x),sothesumoftheseries
has the same property. This implies 0 derivative atx=a.

15.W(t)=C 0 LA

[

1 −

∑∞

n= 1

2 e−(λ^2 nDt)
(n− 1 / 2 )^2 π^2

]

.

Section 2.6



  1. The graph ofv(x)is a straight line fromT 0 atx=0toT∗atx=a,where


T∗=T 0 +

ha
k+ha(T^1 −T^0 ).
In all cases,T∗is betweenT 0 andT 1.


  1. Negative solutions provide no new eigenfunctions.


7.bm=λ^2 (^1 −cos(λma))
m[a+(κ/h)cos^2 (λma)]

.

9.bm=−^2 (κ+ah)cos(λma)
λm(ah+κcos^2 (λma))

.

Section 2.7


1.λn=nπ/ln 2,φn=sin(λnln(x)).


  1. a. sin(λnx),λn=( 2 n− 1 )π/ 2 a;
    b. cos(λnx),λn=( 2 n− 1 )π/ 2 a;
    c. sin(λnx),λnasolutionoftan(λa)=−λ;
    d.λncos(λnx)+sin(λnx),λna solution of cot(λa)=λ;
    e.λncos(λnx)+sin(λnx),λnasolutionoftan(λa)= 2 λ/(λ^2 − 1 ).

  2. The weight functions in the orthogonality relations and limits of integra-
    tion are:
    a. 1+x,0toa;b.ex,0toa;c.x^12 ,1to2; d.ex,0toa.

  3. Becauseλappears in a boundary condition.

  4. The negative value ofμdoes not contradict Theorem 2 because the coef-
    ficientα 2 is not positive.

Free download pdf