1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

Chapter 2 459


Section 2.8


1.x=

∑∞

n= 1

cnφn,1<x<b;cn= 2 nπ^1 −bcos(nπ)
n^2 φ^2 +ln^2 (b)

.

3. 1=

∑∞

n= 1

cnφn,0<x<a;cn= 2 nπ^1 −e

a/ (^2) cos(nπ)
n^2 π^2 +a^2 / 4


.

(Hint: Find the sine series ofex/^2 .)

5.bn=

∫r

l

f(x)ψn(x)p(x)dx.


  1. 1 and



2cos(nπx),n= 1 , 2 ,....

Section 2.9



  1. a.v(x)=constant; b.v(x)=AI(x)+B.

  2. If∂u/∂x=0 at both ends, then the steady-state problem is indeterminate.
    But Eqs. (1)–(3) are homogeneous, so separation of variables applies di-
    rectly. Note thatλ 0 =0andφ 0 =1. The constant term in the series for
    u(x,t)is


a 0 =

∫r
l∫pr(x)f(x)dx
lp(x)dx

.

Section 2.10



  1. The solution is as in Eq. (9), withB(λ)= 2 T(cos(λa)−cos(λb))/λπ.


3.u(x,t)is given by Eq. (6) withB(λ)=π(α^22 T+^0 λλ (^2) ).
5.u(x,t)=


∫∞

0

A(λ)cos(λx)exp

(

−λ^2 kt

)

dλ;

A(λ)=^2 πλT

(

sin(λb)−sin(λa)

)

.

7.u(x,t)=T 0 +

∫∞

0

B(λ)sin(λx)exp

(

−λ^2 kt

)

dλ;

B(λ)=

2

π

∫∞

0

(

f(x)−T 0

)

sin(λx)dx.


  1. a.v(x)=C 0 e−ax;


b.

∂w
∂t =D

(∂ (^2) w
∂x^2 −a
(^2) w


)

,0<x,0<t,
Free download pdf