Chapter 3 467
Figure 4 Solution for Exercise 3, Section 3.6.Givenα,pcan be adjusted so thatmis an integer whenevernis an integer.Section 3.5
- Ifq≥0, the numerator in Eq. (3) must also be greater than or equal to 0,
sinceφ 1 (x)cannot be identically 0. - 2π^2 /3isoneestimatefromy=sin(πx).
5.∫ 2
1(y′)^2 dx=^1
3,
∫ 2
1y^2
x^4dx=^25
6−6ln2;N(y)/D(y)= 42 .83;λ 1 ≤ 6 .54.Section 3.6
1.u(x,t)=^12 [fe(x+ct)+Go(x+ct)]+^12 [fe(x−ct)−Go(x−ct)], wherefe
is the even extension offandGois the odd extension ofG.- See Fig. 4.
- See Fig. 5.
7.u(x,t)=1
2
[
f(x+ct)+f(x−ct)]
+
1
2 c∫x+ctx−ctg(y)dy.Chapter 3 Miscellaneous Exercises
1.u(x,t)=∑∞
1bnsin(λnx)cos(λnct),bn= 2(
1 −cos(nπ))
/nπ,λn=nπ/a.