1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

466 Answers to Odd-Numbered Exercises


and similarly
∂^2 u
∂t^2 =c

2

(∂ (^2) v
∂w^2 −^2
∂^2 v
∂z∂w+
∂^2 v
∂z^2


)

.

(We have assumed that the two mixed partials∂^2 v/∂z∂wand∂^2 v/∂w∂z
are equal.) Ifu(x,t)satisfies the wave equation, then
∂^2 u
∂x^2

=^1

c^2

∂^2 u
∂t^2

.

In terms of the functionvand the new independent variables this equa-
tion becomes
∂^2 v
∂w^2

+ 2 ∂

(^2) v
∂z∂w


+∂

(^2) v
∂z^2


=∂

(^2) v
∂w^2


− 2 ∂

(^2) v
∂z∂w


+∂

(^2) v
∂z^2
or, simply,
∂^2 v
∂z∂w


= 0.

13.u(x,t)=−c^2 cos(t)+φ(x−ct)+ψ(x+ct).

Section 3.4



  1. Iffandgare sectionally smooth andfis continuous.

  2. The frequency iscλnrads/sec, and the period is 2π/cλnsec.

  3. Separation of variables leads to the following in place of Eqs. (11)
    and (12):
    T′′+γT′+λ^2 c^2 T= 0 , (11′)
    (
    s(x)φ′


)′

−q(x)φ+λ^2 p(x)φ= 0. (12′)
The solutions of Eq. (11′) all approach 0 ast→∞,ifγ>0.


  1. The period ofTn(t)=ancos(λnct)+bnsin(λnct)is 2π/λnc.AllTn’s have
    a common periodpif and only if for eachnthere is an integermsuch
    thatm( 2 π/λnc)=p,orm=(pc/ 2 π)λnis an integer. Forλnas shown
    andβ=q/r,whereqandrare integers, this means


m=

(

pc
2 π

)

α

(

n+q
r

)

or
m=

(pc
2 π


r(rn+q).
Free download pdf