466 Answers to Odd-Numbered Exercises
and similarly
∂^2 u
∂t^2 =c
2
(∂ (^2) v
∂w^2 −^2
∂^2 v
∂z∂w+
∂^2 v
∂z^2
)
.
(We have assumed that the two mixed partials∂^2 v/∂z∂wand∂^2 v/∂w∂z
are equal.) Ifu(x,t)satisfies the wave equation, then
∂^2 u
∂x^2
=^1
c^2
∂^2 u
∂t^2
.
In terms of the functionvand the new independent variables this equa-
tion becomes
∂^2 v
∂w^2
+ 2 ∂
(^2) v
∂z∂w
+∂
(^2) v
∂z^2
=∂
(^2) v
∂w^2
− 2 ∂
(^2) v
∂z∂w
+∂
(^2) v
∂z^2
or, simply,
∂^2 v
∂z∂w
= 0.
13.u(x,t)=−c^2 cos(t)+φ(x−ct)+ψ(x+ct).
Section 3.4
- Iffandgare sectionally smooth andfis continuous.
- The frequency iscλnrads/sec, and the period is 2π/cλnsec.
- Separation of variables leads to the following in place of Eqs. (11)
and (12):
T′′+γT′+λ^2 c^2 T= 0 , (11′)
(
s(x)φ′
)′
−q(x)φ+λ^2 p(x)φ= 0. (12′)
The solutions of Eq. (11′) all approach 0 ast→∞,ifγ>0.
- The period ofTn(t)=ancos(λnct)+bnsin(λnct)is 2π/λnc.AllTn’s have
a common periodpif and only if for eachnthere is an integermsuch
thatm( 2 π/λnc)=p,orm=(pc/ 2 π)λnis an integer. Forλnas shown
andβ=q/r,whereqandrare integers, this means
m=
(
pc
2 π
)
α
(
n+q
r
)
or
m=
(pc
2 π
)α
r(rn+q).