1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

Chapter 4 473



  1. a. See Eq. (11).an=0,cn= 200 ( 1 −cos(nπ ))/nπ;
    b.u(x,y)=u 1 (x,y)+u 2 (x,y),u 1 (x,y)is the solution to Part a,


u 2 (x,y)=

∑∞

n= 1

cnsinh(μnx)
sinh(μna)

sin(μny),

μn=nπ/b,cn= 200 ( 1 −cos(nπ ))/nπ.
c.u(x,y)=u 1 (x,y)+u 2 (x,y),where

u 1 (x,y)=

∑∞

n= 1

cnsinh(λny)
sinh(λnb)

sin(λnx),

u 2 (x,y)=

∑∞

n= 1

cnsinh(μnx)
sinh(μna)

sin(μny).

In both series,cn= 2 ab(− 1 )n+^1 /nπ. Also noteu(x,y)=xy.

Section 4.3



  1. a.u(x,y)=1, but the form found by applying the methods of this sec-
    tion is


u(x,y)=

∑∞

n= 1

ansinh(λny)+sinh(λn(b−y))
sinh(λnb)

cos(λnx)

+

∑∞

n= 1

bncosh(μnx)
cosh(μna)

sin(μny),

where

λn=(^2 n−^1 )π
2 a

, an=

4sin

(( 2 n− 1 )π
2

)

π( 2 n− 1 )

,

μn=nbπ, bn=^2 (^1 −cosnπ(nπ)).

b.u(x,y)=y/b, and this is found by the methods of this section. In this
case, 0 is an eigenvalue.

c.^4
π

∑∞

1

(− 1 )n+^1 cos(λny)
( 2 n− 1 )

sinh(λn(a−x))
sinh(λna)

,λn=

(

2 n− 1
2

π
b

)

.

3.b 0 b=V 20 ,bnsinh(λnb)=^2 V^0 (cosn 2 (πnπ) 2 −^1 ).
Free download pdf