Chapter 4 473
- a. See Eq. (11).an=0,cn= 200 ( 1 −cos(nπ ))/nπ;
b.u(x,y)=u 1 (x,y)+u 2 (x,y),u 1 (x,y)is the solution to Part a,
u 2 (x,y)=∑∞
n= 1cnsinh(μnx)
sinh(μna)sin(μny),μn=nπ/b,cn= 200 ( 1 −cos(nπ ))/nπ.
c.u(x,y)=u 1 (x,y)+u 2 (x,y),whereu 1 (x,y)=∑∞
n= 1cnsinh(λny)
sinh(λnb)sin(λnx),u 2 (x,y)=∑∞
n= 1cnsinh(μnx)
sinh(μna)sin(μny).In both series,cn= 2 ab(− 1 )n+^1 /nπ. Also noteu(x,y)=xy.Section 4.3
- a.u(x,y)=1, but the form found by applying the methods of this sec-
tion is
u(x,y)=∑∞
n= 1ansinh(λny)+sinh(λn(b−y))
sinh(λnb)cos(λnx)+
∑∞
n= 1bncosh(μnx)
cosh(μna)sin(μny),whereλn=(^2 n−^1 )π
2 a, an=4sin(( 2 n− 1 )π
2)
π( 2 n− 1 ),
μn=nbπ, bn=^2 (^1 −cosnπ(nπ)).b.u(x,y)=y/b, and this is found by the methods of this section. In this
case, 0 is an eigenvalue.c.^4
π∑∞
1(− 1 )n+^1 cos(λny)
( 2 n− 1 )sinh(λn(a−x))
sinh(λna),λn=(
2 n− 1
2π
b)
.
3.b 0 b=V 20 ,bnsinh(λnb)=^2 V^0 (cosn 2 (πnπ) 2 −^1 ).