474 Answers to Odd-Numbered Exercises
- Check zero boundary conditions by substituting. Atx=a,find
Ancosh(μna)=^2 b∫b0Sycos(μny)dy.7.w(x,y)=∑∞
n= 1ancosh(λny)cos(λnx). From the condition aty=b,ancosh(λnb)=^2
a∫a0Sb
a(x−a)cos(λnx)dx.9.w(x,y)=∑∞
n= 1cnsinh(λny)+ansinh(λn(b−y))
sinh(λnb) sin(λnx),an=cn=−2
a∫a0Hx(a−x)sin(λnx)dx=− 2 Ha^21 −cos(nπ)
n^3 π^3.- 12A+ 2 C=−K,12E+ 2 C=−K. There are many solutions.
Section 4.4
1.an=^2 a∫a0f(x)sin(
nπx
a)
dx.3.A(μ)=2
π∫∞
0g 2 (y)sin(μy)dy.- a.u(x,y)=
∑
cncos(λnx)exp(−λny),λn=( 2 n− 1 )π/ 2 a,
cn= 4 (− 1 )n+^1 /π( 2 n− 1 );b.u(x,y)=∫∞
0B(λ)cosh(λx)sin(λy)dλ,B(λ)=^2 λ
π(λ^2 + 1 )cosh(λa);
c.u(x,y)=∫∞
0A(λ)cos(λy)sinh(λx)dλ,A(λ)=2sin(λb)
πλsinh(λa).7.u(x,y)=∑∞
1bnsin(λnx)exp(−λny)+∫∞
0(
A(μ)sinh(μx)
sinh(μa)+B(μ)sinh(μ(a−x))
sinh(μa))
sin(μy)dμ,λn=nπ/a,bn= 2 ( 1 −cos(nπ ))/nπ,A(μ)=B(μ)= 2 μ/π(μ^2 + 1 ).
Also see Exercise 8.- a.u(x,y)=π^2
∫∞
01 −cos(λa)
λ sin(λx)sinh(λy)
sinh(λb)dλ;