474 Answers to Odd-Numbered Exercises
- Check zero boundary conditions by substituting. Atx=a,find
Ancosh(μna)=^2 b
∫b
0
Sycos(μny)dy.
7.w(x,y)=
∑∞
n= 1
ancosh(λny)cos(λnx). From the condition aty=b,
ancosh(λnb)=^2
a
∫a
0
Sb
a
(x−a)cos(λnx)dx.
9.w(x,y)=
∑∞
n= 1
cnsinh(λny)+ansinh(λn(b−y))
sinh(λnb) sin(λnx),
an=cn=−
2
a
∫a
0
Hx(a−x)sin(λnx)dx=− 2 Ha^2
1 −cos(nπ)
n^3 π^3.
- 12A+ 2 C=−K,12E+ 2 C=−K. There are many solutions.
Section 4.4
1.an=^2 a
∫a
0
f(x)sin
(
nπx
a
)
dx.
3.A(μ)=
2
π
∫∞
0
g 2 (y)sin(μy)dy.
- a.u(x,y)=
∑
cncos(λnx)exp(−λny),λn=( 2 n− 1 )π/ 2 a,
cn= 4 (− 1 )n+^1 /π( 2 n− 1 );
b.u(x,y)=
∫∞
0
B(λ)cosh(λx)sin(λy)dλ,B(λ)=^2 λ
π(λ^2 + 1 )cosh(λa)
;
c.u(x,y)=
∫∞
0
A(λ)cos(λy)sinh(λx)dλ,A(λ)=
2sin(λb)
πλsinh(λa).
7.u(x,y)=
∑∞
1
bnsin(λnx)exp(−λny)
+
∫∞
0
(
A(μ)sinh(μx)
sinh(μa)
+B(μ)sinh(μ(a−x))
sinh(μa)
)
sin(μy)dμ,
λn=nπ/a,bn= 2 ( 1 −cos(nπ ))/nπ,A(μ)=B(μ)= 2 μ/π(μ^2 + 1 ).
Also see Exercise 8.
- a.u(x,y)=π^2
∫∞
0
1 −cos(λa)
λ sin(λx)
sinh(λy)
sinh(λb)dλ;