Chapter 4 473
- a. See Eq. (11).an=0,cn= 200 ( 1 −cos(nπ ))/nπ;
b.u(x,y)=u 1 (x,y)+u 2 (x,y),u 1 (x,y)is the solution to Part a,
u 2 (x,y)=
∑∞
n= 1
cnsinh(μnx)
sinh(μna)
sin(μny),
μn=nπ/b,cn= 200 ( 1 −cos(nπ ))/nπ.
c.u(x,y)=u 1 (x,y)+u 2 (x,y),where
u 1 (x,y)=
∑∞
n= 1
cnsinh(λny)
sinh(λnb)
sin(λnx),
u 2 (x,y)=
∑∞
n= 1
cnsinh(μnx)
sinh(μna)
sin(μny).
In both series,cn= 2 ab(− 1 )n+^1 /nπ. Also noteu(x,y)=xy.
Section 4.3
- a.u(x,y)=1, but the form found by applying the methods of this sec-
tion is
u(x,y)=
∑∞
n= 1
ansinh(λny)+sinh(λn(b−y))
sinh(λnb)
cos(λnx)
+
∑∞
n= 1
bncosh(μnx)
cosh(μna)
sin(μny),
where
λn=(^2 n−^1 )π
2 a
, an=
4sin
(( 2 n− 1 )π
2
)
π( 2 n− 1 )
,
μn=nbπ, bn=^2 (^1 −cosnπ(nπ)).
b.u(x,y)=y/b, and this is found by the methods of this section. In this
case, 0 is an eigenvalue.
c.^4
π
∑∞
1
(− 1 )n+^1 cos(λny)
( 2 n− 1 )
sinh(λn(a−x))
sinh(λna)
,λn=
(
2 n− 1
2
π
b
)
.
3.b 0 b=V 20 ,bnsinh(λnb)=^2 V^0 (cosn 2 (πnπ) 2 −^1 ).