478 Answers to Odd-Numbered Exercises
- a.u=−r
 
2
4+c 1 ln(r)+c 2 ;b.u=−(ln(r))2
2+c 1 ln(r)+c 2.39.V(x,y)∼=a 0 =^1
a∫a0f(x)dxify> 5 L(becausee−λ^1.^5 L∼=0).- The solution isθ(X,Y)=1. The low Biot number,B=0, means a very
large value for conductivityκ, so very little or no cooling takes place. 
Chapter 5
Section 5.1
- ∂
 
(^2) u
∂x^2
+∂
(^2) u
∂y^2
=^1
c^2∂^2 u
∂t^2,0<x<a,0<y<b,0<t,u(x, 0 ,t)=0, u(x,b,t)=0, 0 <x<a,0<t,
u( 0 ,y,t)=0, u(a,y,t)=0, 0 <y<b,0<t,u(x,y, 0 )=f(x,y), ∂∂ut(x,y, 0 )=g(x,y),0<x<a,0<y<b.- ∂
 
(^2) u
∂x^2
+∂
(^2) u
∂y^2
+∂
(^2) u
∂z^2
=^1
c^2∂^2 u
∂t^2.
Section 5.2
1.∫c0∂^2 u
∂z^2dz=∂u
∂z∣∣
∣∣
c0=0 by Eq. (12).3.W′′+( 2 h/bκ)(T 2 −W)=0, 0 <x<a, W( 0 )=T 0 , W(a)=T 1.
W(x)=T 2 +Acosh(μx)+Bsinh(μx),whereμ^2 = 2 h/bκ,
A=T 0 −T 2 ,B=(T 1 −T 2 −Acosh(μa))/sinh(μa).5.∇^2 u=^1 k∂∂ut,0<x<a,0<y<b,0<t,
∂u
∂x(^0 ,y,t)=0, u(a,y,t)=T^0 ,0<y<b,0<t,
u(x, 0 ,t)=T 0 ,∂u
∂y(x,b,t)=0,^0 <x<a,0<t,
u(x,y, 0 )=f(x,y),0<x<a,0<y<b.