Chapter 5 479
Section 5.3
- Ifa=b, the lowest eigenvalues are those with indices(m,n),inthisor-
der:( 1 , 1 );( 1 , 2 )=( 2 , 1 );( 2 , 2 );( 3 , 1 )=( 1 , 3 );( 3 , 2 )=( 2 , 3 );( 1 , 4 )=
( 4 , 1 );( 3 , 3 ). - Frequencies areλmnc/ 2 π(Hz), whereλ^2 mnare the eigenvalues found in
the text.
5.λ^2 mn=(mπ/a)^2 +(nπ/b)^2 , form= 0 , 1 , 2 ,...,n= 1 , 2 , 3 ,.... - a.u(x,y,t)=1.
For b and c the solution has the form
u(x,y,t)=
∑
m,n
amncos
(mπx
a
)
cos
(nπy
b
)
exp
(
−λ^2 mnkt
)
,
whereλ^2 mn=(mπ/a)^2 +(nπ/b)^2 andmandnrun from 0 to∞.
b.a 00 =(a+b)
2
, am 0 =−^2 b(^1 −cos(mπ))
m^2 π^2
,
a 0 n=−^2 a(^1 −cos(nπ))
n^2 π^2
, amn=0otherwise;
c.a 00 =ab 4 , am 0 =−ab(^1 −mcos (^2) π 2 (mπ)), a 0 n=−ab(^1 −n 2 cosπ 2 (nπ)),
amn=
4 ab( 1 −cos(nπ ))( 1 −cos(mπ))
m^2 n^2 π^4
ifmandnare greater than zero.
- The choice of a positive constant for eitherX′′/XorY′′/Y,underthe
boundary conditions in Eqs. (9) and (10), will lead to the trivial solution. - The nodal lines form a grid:umn(x,y,t)=0atx=0,a/m,2a/m,...,a
and aty=0,b/n,2b/n,...,b.
Section 5.4
- The partial differential equations are the same, the boundary conditions
become homogeneous, and in the initial conditionsg(r,θ)is replaced by
g(r,θ)−v(r,θ). - In the heat problem,T′+λ^2 kT=0.Inthewaveproblem,T′′+λ^2 c^2 T=0.
- The boundary conditions Eqs. (10) and (11) would be replaced by
Q( 0 )= 0 , Q(π )= 0.
Solutions areQ(θ )=sin(nθ),n= 1 , 2 ,....