482 Answers to Odd-Numbered Exercises
(A superscriptkin parentheses meanskth derivative.) The right-hand
side looks like the binomial theorem. In the case at hand, at most two
terms are not zero.
11.bn=
0(nodd),
−(− 1 )n/^2 ( 2 n+ 1 )
(n+ 2 )(n− 1 )
1 · 3 · 5 ···(n− 1 )
2 · 4 · 6 ···n (neven).
Section 5.10
- The solution is as given in Eq. (5) with coefficients as shown in Eq. (7).
The integration yields (see Section 5.9)
b 0 =^12 ;bn=0 forneven;b 1 = 3 /4and
bn=
(− 1 )(n−^1 )/^2
2 ·cn
1 · 3 · 5 ···(n− 2 )
2 · 4 · 6 ···(n− 1 )·
2 n+ 1
n+ 1 ,n=^3 ,^5 ,^7 ,....
3.u(φ,t)=T−
∑
bnPn(cos(φ))exp(−(μ^2 +n(n+ 1 ))kt/R^2 ),whereμ^2 =
γ^2 R^2 ,nis odd, andbnis as at the end of Part B, withT 0 =T.
- The eigenfunctions are as in Part C, except thatnmust be odd in order to
satisfy the boundary condition. - The nodal surfaces are: a sphere atρ= 0 .634 and two naps of a cone given
byφ= 0. 304 πandρ= 0. 696 π.
Chapter 5 Miscellaneous Exercises
1.u(x,y,t)=
∑∞
m= 1
amsin(μmy)exp
(
−μ^2 mkt
)
+
∑∞
n= 1
amncos(λnx)sin(μmy)exp
(
−
(
μ^2 m+λ^2 n
)
kt
)
,
μm=mπb,λn=nπ/a,
am=T^1 −cosmπ(mπ),amn=^4 πT 3 (cos(nπ)−^1 n)( (^2) m^1 −cos(mπ)).
3.u(a/ 2 ,b/ 2 ,t)=
∑∞
n= 1
bmnsin
(nπ
2
)
sin
(mπ
2
)
exp
(
−
(
λ^2 n+μ^2 m
)
kt
)
,
whereλn=nπ/a,μm=mπ/b,and
bmn=^4 πT 2 (^1 −cos(mπ ))(mn^1 −cos(nπ)).