Chapter 5 483
The first three nonzero terms are, fora=b, those with(m,n)=
( 1 , 1 ), ( 1 , 3 )=( 3 , 1 ), ( 3 , 3 ). All terms with an even index are 0.
u(a/ 2 ,a/ 2 ,t)∼=
16 T
π^2
(
e−^2 τ−
2
3 e
− 10 τ+^1
9 e
− 18 τ
)
,
whereτ=ktπ^2 /a^2.
5.u(r)=
(
a^2 −r^2
)
/2andu(r)=
∑∞
1
CnJ 0 (λnr), withCn=^2 a
2
αn^3 J 1 (αn)
.
7.w(x,t)=a 0 +
∑∞
n= 1
ancos(λnx)exp
(
−λ^2 nkt
)
,
v(y,t)=
∑
bmsin(μmy)exp
(
−μ^2 mkt
)
,
whereμm=mπ/b,λn=nπ/a, and initial conditions are
v(y, 0 )= 1 , 0 <y<b; w(x, 0 )=Tx/a, 0 <x<a.
9.J 0 (λr)exp(−λ^2 kt).
11.Bk=bk/k(k+ 1 )fork= 1 , 2 ,...;b 0 must be 0, andB 0 is arbitrary.
((
1 −x^2
)
y′
)′
− m
2
1 −x^2 y+μ
(^2) y=0.
15.u(r,z)=
∑∞
n= 1
ansinhsinh(λ(λnz)
nb)
J 0 (λnr),
whereλn=αn
a
andan=^2 U^0
αnJ 1 (αn)
.
17.u(r,z,t)=sin(μz)J 0 (λr)sin(νct)is a product solution ifμ=mπ/b,λ=
αn/a,andν=
√
μ^2 +λ^2. The frequencies of vibration are thereforeνc
or
c
√(
mπ
b
) 2
+
(
αn
a
) 2
.
- Each of the two terms satisfies∇^2 φ=−( 5 π^2 )φ.Ony=0andx=1,
both terms are 0; ony=xthey are obviously equal in value, opposite in
sign. - Each term satisfies∇^2 φ=−( 16 π^2 / 3 )φ.
Ony=0,φ=sin( 2 nπx)−sin( 2 nπx);
ony=
√
3 x,φ=sin( 4 nπx)+ 0 −sin( 2 nπ· 2 x);