1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

484 Answers to Odd-Numbered Exercises


ony=


3 ( 1 −x),φ=sin( 4 nπx)+sin( 2 nπ( 1 − 2 x))−sin 2nπ.


  1. For a sextant,φn=J 3 n(λr)sin( 3 nθ)andJ 3 n(λ)=0. Thusλ 1 = 6 .380,
    which is less than



16 π^2 / 3 = 7. 255.
25.b=−1.


  1. Sincey(x)=hJ 0 (kx)/J 0 (ka),wherek=ω/√gU, the solution cannot
    have this form ifJ 0 (ka)=0.
    29.u(r,t)=R(t)T(t);R(r)=r−mJm(λr),wherem=(n− 2 )/2;T(t)=
    acos(λct)+bsin(λct).


31.b=DrL

2
DzR^2

,ρ=UL
Dz

.

33.a 0 = 12 .77,a 1 =− 4 .88.


  1. tan(λ)=Dλ/(D+λ^2 ),λ=π(D=0), 3.173 (D=1), 4.132 (D=10).


Chapter 6


Section 6.1



  1. c. s


(^2) + 2 ω 2
s(s^2 + 4 ω^2 )
;d.ωcos(φ)−ssin(φ)
s^2 +ω^2


;

e. e

2
s− 2

;f.^2 ω

2
s(s^2 + 4 ω^2 )

.


  1. a.e


−as
s ;b.

e−as−e−bs
s ;c.

1 −e−as
s^2.


  1. a.e−tsinh(t);b.e−tcos(t);c.e−at


sin(


b^2 −a^2 t)

b^2 −a^2

.


  1. a.e


at−ebt
a−b ;b.

t
2 asinh(at);d.

t^2 eat
2 ;
e.f(t)=

{ 1 , 0 <t<1,
0 , 1 <t.


  1. a. [sin(ωt)−ωtcos(ωt)]/ 2 ω^2 ;
    b. See Table 2;
    c. See 7c;
    d. [cos(ωt)−ωtsin(ωt)]/2.

Free download pdf