Chapter 6 485
Section 6.2
- a.e^2 t;b.e−^2 t;c.^3 e
−t−e− 3 t
2 ;d.sin( 3 t)
3.- a.^1 −e
−at
a;b.t−sin(t);c.sin(t)−^12 sin( 2 t)
3;
d.(sin( 2 t)− 2 tcos( 2 t))/16; e.−3
4 +
1
2 t+e−t−^1
4 e− 2 t;f.cosh(t)−1.- a.
e^2 t−e−^2 t
4 ;b.1
2 sin(^2 t);c.^3
2+i√
2 − 3
4
exp(
−i√
2 t)
−i√
2 − 3
4
exp(
i√
2 t)
;d.4(
1 −e−t)
.
- a. 1−cos(t);b.e
t−cos(ωt)+ωsin(ωt)
ω^2 + 1 ;c.t−sin(t).Section 6.3
- a.s=−
( 2 n− 1
2π) 2
,n= 1 , 2 ,...;b.s=±i^2 n−^1
2π,n= 1 , 2 ,...;
c.s=±inπ,n= 0 , 1 , 2 ,...;
d.s=iη,wheretanη=−^1
η;
e.s=iη,wheretanη=^1
η.
- a.
sinh(√sx)
s^2 sinh(√s);b.1
s−cosh(√
s(^12 −x))
s(s+ 1 )cosh(√s/ 2 ).- a.u(x,t)=x+
∑∞
n= 12sin(nπx)
nπcos(nπ)exp(
−n^2 π^2 t)
;
b.u(x,t)is 1 minus the solution of Example 3.Section 6.4
1.t+x2
2.3.v(x,t)=^4
π^2∑∞
1cos(
( 2 n− 1 )(^12 −x))
sin(( 2 n− 1 )πt)
( 2 n− 1 )^2 sin( 2 n− 1
2 π