1540470959-Boundary_Value_Problems_and_Partial_Differential_Equations__Powers

(jair2018) #1

Chapter 6 485


Section 6.2



  1. a.e^2 t;b.e−^2 t;c.^3 e


−t−e− 3 t
2 ;d.

sin( 3 t)
3.


  1. a.^1 −e


−at
a

;b.t−sin(t);c.

sin(t)−^12 sin( 2 t)
3

;

d.(sin( 2 t)− 2 tcos( 2 t))/16; e.−

3

4 +

1

2 t+e

−t−^1
4 e

− 2 t;f.cosh(t)−1.


  1. a.


e^2 t−e−^2 t
4 ;b.

1

2 sin(^2 t);

c.^3
2

+i


2 − 3

4

exp

(

−i


2 t

)

−i


2 − 3

4

exp

(

i


2 t

)

;d.4

(

1 −e−t

)

.


  1. a. 1−cos(t);b.e


t−cos(ωt)+ωsin(ωt)
ω^2 + 1 ;c.t−sin(t).

Section 6.3



  1. a.s=−


( 2 n− 1
2

π

) 2

,n= 1 , 2 ,...;

b.s=±i^2 n−^1
2

π,n= 1 , 2 ,...;
c.s=±inπ,n= 0 , 1 , 2 ,...;
d.s=iη,wheretanη=−^1
η

;

e.s=iη,wheretanη=^1
η

.


  1. a.


sinh(√sx)
s^2 sinh(√s);b.

1

s−

cosh

(√

s(^12 −x)

)

s(s+ 1 )cosh(√s/ 2 ).


  1. a.u(x,t)=x+


∑∞

n= 1

2sin(nπx)
nπcos(nπ)exp

(

−n^2 π^2 t

)

;

b.u(x,t)is 1 minus the solution of Example 3.

Section 6.4


1.t+x

2
2.

3.v(x,t)=^4
π^2

∑∞

1

cos

(

( 2 n− 1 )(^12 −x)

)

sin(( 2 n− 1 )πt)
( 2 n− 1 )^2 sin

( 2 n− 1
2 π

).
Free download pdf