484 Answers to Odd-Numbered Exercises
ony=
√
3 ( 1 −x),φ=sin( 4 nπx)+sin( 2 nπ( 1 − 2 x))−sin 2nπ.
- For a sextant,φn=J 3 n(λr)sin( 3 nθ)andJ 3 n(λ)=0. Thusλ 1 = 6 .380,
which is less than
√
16 π^2 / 3 = 7. 255.
25.b=−1.
- Sincey(x)=hJ 0 (kx)/J 0 (ka),wherek=ω/√gU, the solution cannot
have this form ifJ 0 (ka)=0.
29.u(r,t)=R(t)T(t);R(r)=r−mJm(λr),wherem=(n− 2 )/2;T(t)=
acos(λct)+bsin(λct).
31.b=DrL
2
DzR^2
,ρ=UL
Dz
.
33.a 0 = 12 .77,a 1 =− 4 .88.
- tan(λ)=Dλ/(D+λ^2 ),λ=π(D=0), 3.173 (D=1), 4.132 (D=10).
Chapter 6
Section 6.1
- c. s
(^2) + 2 ω 2
s(s^2 + 4 ω^2 )
;d.ωcos(φ)−ssin(φ)
s^2 +ω^2
;
e. e
2
s− 2
;f.^2 ω
2
s(s^2 + 4 ω^2 )
.
- a.e
−as
s ;b.
e−as−e−bs
s ;c.
1 −e−as
s^2.
- a.e−tsinh(t);b.e−tcos(t);c.e−at
sin(
√
b^2 −a^2 t)
√
b^2 −a^2
.
- a.e
at−ebt
a−b ;b.
t
2 asinh(at);d.
t^2 eat
2 ;
e.f(t)=
{ 1 , 0 <t<1,
0 , 1 <t.
- a. [sin(ωt)−ωtcos(ωt)]/ 2 ω^2 ;
b. See Table 2;
c. See 7c;
d. [cos(ωt)−ωtsin(ωt)]/2.