320 BIBLIOGRAPHY
[68] Hamilton, Richard S.; Yau, Shing-Tung. The Harnack estimate for the Ricci flow on
a surface-revisited. Asian J. Math. 1 (1997), no. 3, 418 - 421.
[69] Hass, Joel; Morgan, Frank. Geodesics and soap bubbles in surfaces. Math. Z. 223
(1996), no. 2, 185 - 196.
[70] Hatcher, Allen. Basic topology of 3-manifolds. http: I /www .math. cornell. edu/
-hat ch er I #3M.
[71] Hempel, John 3-Manifolds. Ann. of Math. Studies, No. 86. Princeton University
Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976.
[72] Hsu, Shu-Yu. Large time behaviour of solutions of the Ricci flow equation on 1R^2.
Pacific J. Math. 197 (2001), no. 1, 25 - 41.
[73] Hsu, Shu-Yu. Global existence and uniqueness of solutions of the Ricci flow equation.
Differential Integral Equations 14 (2001), no. 3, 305 - 320.
[74] H.uisken, Gerhard. Flow by mean curvature of convex surfaces into spheres. J. Dif-
ferential Geom. 20 (1984), no. 1, 237- 266.
[75] Huisken, Gerhard. Ricci deformation of the metric on a Riemannian manifold.
J. Differential Geom. 21 (1985), no. 1, 47 - 62.
[76] Isenberg, James; Jackson, Martin. Ricci flow of locally homogeneous geometries on
closed manifolds. J. Differential Geom. 35 (1992), no. 3, 723- 741.
[77] Ivey, Thomas. Ricci solitons on compact Kahler surfaces.
Proc. Amer. Math. Soc. 125 (1997), no. 4, 1203-1208.
[78] Jaco, William. Lectures on three-manifold topology. CBMS Regional Conference Se-
ries in Mathematics, 43. American Mathematical Society, Providence, R.I., 1980.
[79] Jaco, William; Shalen, Peter B. Seifert fibered spaces in 3-manifolds. Geometric
topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), pp. 91-99, Academic
Press, New York-London, 1979.
[80] Johannson, Klaus. Homotopy equivalences of 3 -manifolds with boundaries. Lecture
Notes in Mathematics, 761 Springer, Berlin, 1979.
[81] Kazdan, Jerry L. Another proof of Bianchi's identity in Riemannian geometry.
Proc. Amer. Math. Soc. 81 (1981), no. 2, 341- 342
[82] Kazdan, Jerry L.; Warner, F. W. Curvature functions for compact 2-manifolds.
Ann. of Math. (2) 99 (1974), 14- 47.
[83] Klingenberg, Wilhelm. Contributions to Riemannian geometry in the large. Ann. of
Math. (2) 69 1959 654 - 666.
[84] Klingenberg, Wilhelm. Uber Riemannsche Mannigfaltigkeiten mit positiver
Kriimmung. (German) Comment. Math. Helv. 35 1961 47-54.
[85] Kneser, H. GeschlojJene Flachen in dreidimensionalen Mannigfaltikeiten, Jahres-
bericht der Deut. Math. Verein. 38 (1929) 248 - 260.
[86] Knopf, Dan; McLeod, Kevin. Quasi-convergence of model geometries under the Ricci
flow. Comm. Anal. Geom. 9 (2001), no. 4, 879-919.
[87] Kobayashi, Shoshichi. Transformation groups in differential geometry. Reprint of
the 1972 edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
[88] Koiso, Norihito. On rotationally symmetric Hamilton's equation for Kahler-
Einstein metrics. Recent topics in differential and analytic geometry, 327-337,
Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990.
[89] Ladyzenskaja, 0. A.; Solonnikov, V. A.; Uralceva, N. N. Linear and quasilinear
equations of parabolic type. (Russian) Translated from the Russian by S. Smith.
Translations of Mathematical Monographs, Vol. 23 American Mathematical Society,
Providence, R.L 1967.
[90] Leviton, P.R. A.; Rubinstein, J. H. Deforming Riemannian metrics on the 2-sphere.
Miniconference on geometry and partial differential equations (Canberra, 1985),
123 - 127, Proc. Centre Math. Anal. Austral. Nat. Univ., 10, Austral. Nat. Univ.,
Canberra, 1986.