420 8. APPLICATIONS OF THE REDUCED DISTANCE
(R(oi,v)v,aj) =
1
2 [(a7R- 2 N 2 ) Rij + lviRY'jRJ
2 (R+ ~) T
- (R~ ~) (-a7Rij -t\7i\7jR+RieRej)'
(R(8i,8j)ok,v) = (Va/::J&j8k-V&jV&i8k,v)
1.
312 (Rjk \i'iR - Rik \ljR)
2 (R+ ~)
1
N 1/2 (\i'iRjk - Y'jRik).
(R + 27)
In terms of Oi and 8n this says
(R(8i,8- 7 )8n8j) =^1 [( N)·^1 ]
2
(R+ ~) 87R- 272 Rij + 2,\i'iR· V'jR
- ( RieRej - t \7i\7jR-87Rij) ,
(R(oi,aj)ak,a7)= (
1
N)(RjkY'iR-RikvjR)-(ViRjk-V'jRik)·
2 R+ 27
Note that the curvatures of g are the components of Hamilton's matrix
Harnack expression in the following sense:
(R(8i, 8j)8k, 8e) = Rijke mod O(N-^1 ),
( R(8i,87)8n8j - ) = -87Rij-^1 1 -1
2
viY'jR+RieRej -
27
Rij mod O(N )
1
= ~Rij - 2 V'iY'jR + 2Rikj£Rke
- RieRej -^1 1
27
Rij mod O(N-),
(R(8i,8j)8k,87) = \i'iRjk - Y'jRik mod O(N-^1 ).
Taking the trace gives the entries of the trace Harnack expression:
- Rc(8i, 8j) -= Rij mod O(N -1 ), ..
- _ 1 -1
Rc(oi,87) =
2
vjR mod O(N ),
Rc(8n 87) = t ~~ = t.6.R + 1Rcl^2 mod O(N-^1 ).
Now consider (M, g) as a warped product:
M =B Xp F,
where the base manifold is (B, 9B) = (M, g), the fiber is (F, gp) =(SN, 9af3),
and f =ft. We use O'Neill's formula to compute the curvatures of (M, g).