1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

514 BIBLIOGRAPHY


[18] Bakry, D.; Emery, Michel. Diffusions hypercontractives. (French) (Hypercontrac-
tive diffusions) Seminaire de probabilites, XIX, 1983/84, 177-206, Lecture Notes
in Math., 1123, Springer, Berlin, 1985.
[19] Bando, Shigetoshi. On the classification of three-dimensional compact Kaehler man-
ifolds of nonnegative bisectional curvature. J. Differential Geom. 19 (1984), no. 2,
283-297.
[20] Bando, Shigetoshi. Real analyticity of solutions of Hamilton's equation, Math. Zeit.
195 (1987), 93-97.
[21] Bando, Shigetoshi; Mabuchi, Toshiki. Uniqueness of Einstein Kahler metrics modulo
connected group actions. Algebraic geometry, Sendai, 1985, 11-40, Adv. Stud. Pure
Math., 10, North-Holland, Amsterdam, 1987.
[22] Barenblatt, Grigory I. On self-similar motions of compressible fluid in a porous
medium. Prikladnaya Matematika i Mekhanika (Applied Mathematics and Mechan-
ics (PMM)), 16 (1952), No. 6, 679-698 (in Russian).
[23] Beckner, William; Pearson, Michael. On sharp Sobolev embedding and the logarith-
mic Sobolev inequality. Bull. London Math. Soc. 30 (1998), no. 1, 80-84.
[24] Berard-Bergery, L. Sur de nouvelles varieties riemannienes d'Einstein. Publ. Inst.
E. Cartan # 4, U. de Nancy (1982).
[25] Berndt, Jurgen; Tricerri, Franco; Vanhecke, Lieven. Generalized Heisenberg groups
and Damek-Ricci harmonic spaces. Lecture Notes in Mathematics, 1598. Springer-
Verlag, Berlin, 1995.
[26] Bernstein, Sergi N. A limitation on the moduli of a sequence of derivatives of solu-
tions of equations of parabolic type. (Russian) Dokl. Akad. Nauk SSSR 18 (1938)
385-388.
[27] Besse, Arthur, Einstein manifolds. Ergebnisse der Mathematik und ihrer Grenzge-
biete, 10. Springer-Verlag, Berlin, 1987.
[28] Bing, R. H. An alternative proof that 3-manifolds can be triangulated. Ann. of Math.
(2) 69 (1959), 37-65.
[29] Bohm, Christoph; Kerr, Megan M. Low-dimensional homogeneous Einstein mani-
folds. Trans. Amer. Math. Soc. 358 (2006), no. 4, 1455-1468.
[30] Bohm, Christoph; Wilking, Burkhard. Manifolds with positive curvature operators
are space forms. arXiv:math.DG/0606187.
[31] Bohm, Christoph; Wilking, Burkhard. Nonnegatively curved manifolds with finite
fundamental groups admit metrics with positive Ricci curvature. Preprint.
[32] Bourguignon, Jean-Pierre. Une stratification de l'espace des structures riemanni-
ennes. (French) Compositio Math. 30 (1975), 1-41.
[33] Bourguignon, Jean-Pierre. Ricci curvature and Einstein metrics. Global differential
geometry and global analysis (Berlin, 1979), pp. 42-63, Lecture Notes in Math.,
838, Springer, Berlin-New York, 1981.
[34] Buckland, John A. Short-time existence of solutions to the cross curvature flow on
3-manifolds. Proc. Amer. Math. Soc. 134 (2006), no. 6, 1803-1807.
[35] Bryant, Robert. Gradient Kahler Ricci solitons. arXiv:math.DG/0407453.
[36] Bryant, R. L.; Chern, S.S.; Gardner, R. B.; Goldschmidt, H. L.; Griffiths, P.A. Ex-
terior differential systems. Mathematical Sciences Research Institute Publications,


  1. Springer-Verlag, New York, 1991.
    [37] Burago, D.; Burago, Y.; Ivanov, S. A course in metric geometry, Grad Studies Math.
    33, Amer. Math. Soc., Providence, RI, 2001. Corrections of typos and small errors
    to the book "A Course in Metric Geometry": http://www.pdmi.ras.ru/staff/burago.
    html#English
    [38] Buscher, T. H. A symmetry of the string background field equations. Phys. Lett.
    Bl94 (1987), 59-62.
    [39] Buscher, T. H. Path integral derivation of quantum duality in nonlinear sigma mod-
    els. Phys. Lett. B201 (1988), 466.

Free download pdf