1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

518 BIBLIOGRAPHY


[111] Chow, Bennett; Lu, Peng; Ni, Lei. Hamilton's Ricci flow. Lectures in Contemporary
Mathematics, 3, Science Press and Graduate Studies in Mathematics, 77, American
Mathematical Society (co-publication), 2006.
[112] Chow, Bennett; Wu, Lang-Fang. The Ricci flow on compact 2-orbifolds with curva-
ture negative somewhere. Comm. Pure Appl. Math. 44 (1991), no. 3, 275-286.
[113] Chu, Sun-Chin. Basic Properties of Gradient Ricci Solitons. In Geometric Evolution
Equations, Contemporary Mathematics 367, S.-C. Chang, B. Chow, S.-C. Chu. C.-
S. Lin, eds., American Mathematical Society, 2005.
[114] Chu, Sun-Chin. Geometry of 3-dimensional gradient Ricci solitons with positive
curvature. Comm. Anal. Geom. 13 (2005), no. 1, 129-150.
[115] Cohn-Vossen, S. Kurzete Wege und Totalkriimmung auf Fliichen. Comp. Math. 2
(1935), 69-133.
[116] Colding, Tobias; Minicozzi, William P. II, Estimates for the extinction time for the
Ricci flow on certain 3-manifolds and a question of Perelman. J. Amer. Math. Soc.
18 (2005), 561-569.
[117] Courant, R.; Hilbert, David. Methods of mathematical physics. Vols. I and IL Inter-
science Publishers, Inc., New York, N.Y., 1953 and 1962 (reprinted in 1989).
[118] Craioveanu, Mircea; Puta, Mircea; Rassias, Themistocles M. Old and new aspects in
spectral geometry. Mathematics and its Applications, 534. Kluwer Academic Pub-
lishers, Dordrecht, 2001.
[119] Daskalopoulos, Panagiota; del Pino, Manuel A. On a singular diffusion equation.
Comm. Anal. Geom. 3 (1995), 523-542.
[120] Daskalopoulos, Panagiota; Hamilton, Richard S. Geometric estimates for the loga-
rithmic fast diffusion equation. Comm. Anal. Geom. 12 (2004), 143-164.
[121] Daskalopoulos, Panagiota; Sesum, Natasa. Eternal Solutions to the Ricci Flow on
ffi.^2. arXiv:math.AP /0603525.
[122] Davies, E. B. Heat kernel-and spectral theory, Cambridge Univ. Press, Cambridge,
1989.
[123] DeTurck, Dennis, Deforming metrics in the direction of their Ricci tensors, J. Dif-
ferential Geom. 18 (1983) 157-162.
[124] DeTurck, Dennis M. Deforming metrics in the direction of their Ricci tensors, im-
proved version, Collected Papers on Ricci Flow, H.-D. Cao, B. Chow, S.-C. Chu,
and S.-T. Yau, eds. Internat. Press, Somerville, MA, 2003.
[125] Dijkgraaf, Robbert; Verlinde, Herman; Verlinde, Erik. String propagation in a black
hole geometry. Nucl. Phys. B 371 (1992), 269-314.
[126] Ding, Yu. Notes on Perelman's second paper. http://math.uci.edu;-yding/
perelman.pdf.
[127] do Carmo, Manfredo Perdigao. Riemannian geometry. Translated from the sec-
ond Portuguese edition by Francis Flaherty. Mathematics: Theory & Applications.
Birkhauser Boston, Inc., Boston, MA, 1992.
[128] Donaldson, Simon K. Anti self-dual Yang-Mills connections over complex algebraic
surfaces and stable vector bundles. Proc. London Math. Soc. (3) 50 (1985), no. 1,
1-26.
[129] Donaldson, Simon K. Scalar curvature and stability of toric varieties. J. Differential
Geom. 62 (2002), no. 2, 289-349.
[130] Donaldson, Simon K. Lower bounds on the Calabi functional. J. Differential Geom.
70 (2005), no. 3, 453-472.
[131] Drazin, P.; Johnson, N. Solitons: an introduction. Cambridge, 1989.
[132] Ecker, Klaus. Regularity theory for mean curvature flow. Progress in Nonlinear Dif-
ferential Equations and their Applications, 57. Birkhauser Boston, Inc., Boston,
MA, 2004.
[133] Ecker, Klaus. A local monotonicity formula for mean curvature flow. Ann. of Math.
(2) 154 (2001), no. 2, 503-525.

Free download pdf