1547845439-The_Ricci_Flow_-_Techniques_and_Applications_-_Part_I__Chow_

(jair2018) #1

528 BIBLIOGRAPHY


[360] Tsuji, Hajime. Existence and degeneration of Kahler-Einstein metrics on minimal
algebraic varieties of general type. Math. Ann. 281 (1988), no. 1, 123-133.
[361] Varadhan, S. R. S. On the behavior of the fundamental solution of the heat equation
with variable coefficients. Comm. Pure Appl. Math. 20 (1967), 431-455. ·
(362] Varopoulos, N. Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63 (1985),
240-260.
[363] Waldhausen, Friedhelm. On irreducible 3-manifolds which are sufficiently large. Ann.
of Math. (2) 87 (1968), 56-88.
(364] Waldhausen, Friedholm. Gruppen mit Zentrum und 3-dimensionale Mannig-
faltigkeiten. Topology 6 (1967), 505-517.
(365] Wang, McKenzie Y.; Ziller, Wolfgang. Existence and nonexistence of homogeneous
Einstein metrics. Invent. Math. 84 (1986), no. 1, 177-194.
[366] Wang, Xu-Jia; Zhu, Xiaohua. Kahler-Ricci solitons on toric manifolds with positive
first Chern class. Adv. Math. 188 (2004), no. 1, 87-103.
[367] Watson, N. A. A theory of temperatures in several variables. Jour Proc. London
Math. Soc. 26 (1973), 385-417.
(368] Wei, Guofang. Curvature formulas in Section 6.1 of Perelman's paper
(math.DG/0211159). http://www.math.ucsb.edu;-wei/Perelman.html
(369] Weibel, Charles A. An introduction to homological algebra. Cambridge Studies in
Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.
(370] Weil, Andre. Introduction a l'etude des varietes kahleriennes. (French) Publications
de l'lnstitut de Mathematique de l'Universite de Nancago, VI. Actualites Sci. Ind.,
no. 1267. Hermann, Paris, 1958.
(371] Wells, R. 0., Jr. Differential analysis on complex manifolds. Second edition. Grad-
uate Texts in Mathematics, 65. Springer-Verlag, New York-Berlin, 1980.
[372] Wu, Lang-Fang. The Ricci flow on 2-orbifolds with positive curvature. J. Differential
Geom. 33 (1991), no. 2, 575-596.
(373] Wu, Lang-Fang. The Ricci flow on complete JR.2. Comm. Anal. Geom. 1 (1993),
no. 3-4, 439-472.
(374] Yang, Deane. Convergence of Riemannian manifolds with integral bounds on curva-
ture, I. Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), 77-105.
(375] Yang, Deane. Convergence of Riemannian manifolds with integral bounds on curva-
ture, II. Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), 179-199.
[376] Yau, Shing-Tung. On the curvature of compact Hermitian manifolds. Invent. Math.
25 (1974), 213-239.
(377] Yau, Shing-Tung. Harmonic functions on complete Riemannian manifolds. Comm.
Pure Appl. Math. 28 (1975), 201-228.
[378] Yau, Shing-Tung. Calabi's conjecture and some new results in algebraic geometry.
Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 5, 1798-1799.
(379] Yau, Shing-Tung. On the Ricci curvature of a compact Kahler manifold and the
complex Monge-Ampere equation. I. Comm. Pure Appl. Math. 31 (1978), no. 3,
339-411.
[380] Yau, Shing-Tung. On the Harnack inequalities of partial differential equations,
Comm. Anal. Geom. 2 (1994), no. 3, 431-450.
[381] Yau, Shing-Tung. Harnack inequality for non-self-adjoint evolution equations, Math.
Res. Lett. 2 (1995), no. 4, 387-399.
[382] Ye, Rugang. On the £-function and the reduced volume of Perelman.
http://www.math.ucsb.edu;-yer/reduced.pdf
(383] Zheng, Fangyang. Complex differential geometry. AMS/IP Studies in Advanced
Mathematics, 18. American Mathematical Society, Providence, RI; International
Press, Boston, MA, 2000.
[384] Zhu, Shunhui. The comparison geometry of Ricci curvature. In Comparison Geom-
etry, Grove and Petersen, eds. MSRI Publ. 30 (1997), 221-262.
Free download pdf