- CHARACTERIZING RICCI FLOW BY ASYMPTOTICS OF HEAT KERNEL 289
Applying (24.72) and (24.73) to (24.71) yields
(24.74) W = -n + (R;j - Rij) (y, T) x~x~ + 21/Ji + (~ + Llx,T) 1/Jo
2T 47 1/Jo
REMARK 24.27 (About the 0 (rr~)
3
) term). If r 7 (x)^2 + T --+ 0 and
r.,-(x)z < C then r.,-(x)3 --+ 0.
T - ' T
By applying to (24.74) the formulas 1/Jo = 1 + 0 (r 7 (x)^2 ), (24.57)
(24.50), and (24.55), we calculate that
w = 2T -n + (1 3 )
2
R +
2
n - 2Q (y, T)
xi
+ ; (\i'iR + 2 (divR)i + \i'in-3\i'iQ) (y, T)
i j (Rij - nij) (y, T)
XTXT 4T
- O (r, ~)') + 0 (n r, (x)').
In particular, if Q = R, then
xi
+ ; (\i'iR + 2 (divR)i - 2\i'iR)(y, T)
i j (Rij - nij) (y, T)
XTXT 4T
+o (r, ~)') + 0 (T+rr (x)').
Further specializing, we have the following.
LEMMA 24.28. If g ( T) evolves by the backward Ricci flow (i.e., Rij =
Rij) and if Q = n, then the approximate adjoint heat kernel HN in (24.8)
satisfies (see (24.66) for the definition of W = W1 + W2)
W = -
2
: + 0 (r, ~x)') + 0 (T+rr (x)')
PROBLEM 24.29. Prove Claim 24.26.