- BOUNDS OF THE HEAT KERNEL FOR AN EVOLVING METRIC 361
Hence
d~(x,y)
c1e -cz(r-v).
H (x, T; y, v) ~ 1/2 1/2.
Vol 9 B9 (x, VT -v) Vol 9 B9 (y, VT -v)
(26. 77)
PROOF. Again let u (x, T) ~ H (x, T; y, v).
(1) By the Li-Yau inequality (25.58) with c: = !, we have (essentially
we have switched x and y in the first variable of (26. 75))
H (x, T; y, v) u(x, T)
H(y, T!v;y,v) u(y, T!v)
~ e_ciiT 2-2nexp (-cod~ (x,y)).
T-V
Then applying the lower bound (26.74) along the diagonal, we obtain
ce -C11T 2 2-2n exp ( -c~ o~ dE(x,y))
H (x, T; y, v) ~ (;=;;
Vol9B9 (y, y T)
const exp (-co~)
>
Vol9 B9 (y, VT -v)
The estimate with x and y switched on the RHS is proved analogously.
(2) Finally, (26.76) implies
2d~(x,y) 1
H(x ry v)2 > c2e-c2Cr-vl---~--~---~---~
' ' ' -^1 Vol9B9(x, VT -v) Vol9B9(y, .JT=V)'
which is (26.77). D
2.3. Double integral upper bound of the heat kernel for a fixed
metric.
The proof of the following special case of a result of Davies [52] uses
techniques similar to that in Theorem 26.25.
THEOREM 26.32 (Davies' double integral upper bound for the heat ker-
nel). If (Mn, g) is a complete Riemannian manifold and if H (x, y, t) is its
heat kernel, then for any two bounded subsets U1 and U2 of M we have
11
1 1 d^2 (U1,U2)
(26.78) H (x, y, t) dμ (x) dμ (y) ::; Vol2 (U1) Vol2 (U2) e- 4t ,
U1 U2.
where d (U1, U2) = infxEUi, yEUz d (x, y) is the distance between U1 and U2.
PROOF. Recall from Lemma 26.13 that H (x, y, t) = H (y, x, t). Let
Ui (x, t) ~ li H (x, y, t) dμ (y)