360 26. BOUNDS FOR THE HEAT KERNEL FOR EVOLVING METRICS
PROOF. Let
u (x, r) ~ H (x, r; y, v).
By the Li-Yau inequality (25.58) with c =!,we have
H(y,r;y,v)
H (x T+v.y v)
' 2 ' '
(26. 75)
u(y,r)
- u(x, T!v)
> -Cn(T--r!v) (~)-
2
n x (-Cod~ (x,y))
- e T+v e p 2 r - T+v
2 2
= e _cll(T~v) 2 ( --2r )- exp -Co~--
2
n ( - d~ (x,y))
r + v r-v
~ e _C11T 2 2 _^2 n exp ( -Co - d~(x,y)) ,
r-v
where Cu < oo is as in Corollary 25.12. Therefore, for A and c as in
Corollary 26.29 (without loss of generality, assume A~ .J2), we have
H(y,r;y,v)
C11T 2
~ e-Cor=v H x, --;y,v dμg (x)
e--2-2-^2 n 1 - d9(x,y) ( r + v )
VolgBg (y,A/9) B9(y,A~) 2.
- 2
e-¥2(-2ne-~ { ( ) H (x, r + v; y, v) dμg (x)
- VolgBg y,Ay 9) }B 9 y,A~ 2
ce - C11T 2 2-2n e -GoAz 2
> --------
- Volg Bg (y, A/9)
const
~ Volg Bg (y, Jr - v)'
where we used (26. 72) and the volume comparison theorem to change the
radius of the ball (note that A\/ T2v :=:; Ajfx). 0
The following is Proposition 5.1 and Corollary 5.3 in [26].
THEOREM 26.31 (Lower boundfor the heat kernel). There exists a pos-
itive constant c1 depending only on n, T, and the bounds on JRijJ, JRijJ,
JV7kRijJ, and J.6.RJ and there exists a positive constant c2 depending only on
T and the bound on JRij J such that
(26. 76)
H(x TY v) > c1min{ l .l } e-c1(~x~~l
' ' ' - VolgBg(x,Jr-v)'VolgBg(y,Jr-v) ·