382 26. BOUNDS FOR THE HEAT KERNEL FOR EVOLVING METRICS
Once we have (26.145), we may apply the maximum principle of Karp
and Li (see the proof of Theorem 1 in [106] or Theorem 1.2 in [144])^12 to
obtain (26.142).
Now we turn to the proof of (26.145). Given R E [1, oo ), let 'f} : M -+
[O, 1] be a C^00 cutoff function with^13
'fJ ( x) = 1 if d ( x, 0) :::; R,
'f} (x) = 0 if d (x, 0) ;::::: 2R,
IY''IJl^2 /'fJ (x) :SC/ R^2 if d (x, 0) < 2R,
where C < oo is a universal constant. Using (26.143) and integrating by
parts, we have
fo
1
JM e-ar
2
(x)'I] (x) l\7f1^2 (x, t) dμ (x) dt
= -~ fo
1
JM e-ar
2
(x)'I] (x) ( :t - ~) (!^2 ) (x, t) dμ (x) dt
::=:; C - f
1
f f (x, t) (\7 (e-ar
2
(x)'I] (x)), \7 f (x, t)) dμ (x) dt,
lo 1B(0,2R)
where we used
Since
~JM e-ar2(x)'I] (x) (!2) (x, 0) dμ (x)
- ~JM e-ar2(x)'f} (x) (!2) (x, 1) dμ (x)
:S ~JM e-ar
2
(x)'f} (x) (r (x) + 1)^2 dμ (x)
:::; c.
- f 1 f f (x, t) I \7 (e-ar
2
(x)'f} (x )) , \7 f (x, t)) dμ (x) dt
lo j B(0,2R) \
::=:; -
2
1
f 1 f e-ar
2
(x)'I] (x) J\7 f J^2 (x, t) dμ (x) dt
lo 1B(0,2R)
1111 ear2(x) 2
+ - 2 -( -) 1\7 (e-ar
2
(x)'I] (x)) I f^2 (x, t) dμ (x) dt,
0 B(0,2R) '/] X
(^12) See also Theorem 12.22 on pp. 153-154 in Part II.
(^13) We only need that fJ is Lipschitz.