1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1
416 J.E. MARSDEN, MECHANICS, DYNAMICS, AND SYMMETRY


  1. Bridges, T.J. [1994] Hamiltonian spatial structure for 3D water waves relative
    to a moving frame of reference, J. Nonlinear Sci. 4 , 221-251.

  2. Bridges, T.J. [1997] Multi-symplectic structures and wave propagation, Math
    Proc Camb Phil Soc, 121 , 147 - 190.

  3. Brockett, R.W. [1981] Control theory and singular Riemannian geometry, in
    New Directions in Applied Mathematics, P.J. Hilton and G.S. Young (eds.),
    Springer-Verlag.

  4. Camassa, R. and D.D. Holm [1993] An integrable shallow water equation with
    peaked solitons, Phys. Rev. Lett., 71, 1661-1664.

  5. Camassa, R., D.D. Holm and J .M. Hyman [1994] A new integrable shallow
    water equation; Adv. Appl. Mech., 31, 1- 33.

  6. Cendra, H., D.D. Holm, M.J.W. Hoyle and J. E. Marsden [1998] The Maxwell-
    Vlasov equations in Euler-Poincare form. J. Math. Phys., 39 , 3138 - 3157.

  7. Cendra, H., D.D. Holm, J. E. Marsden and T.S. Ratiu [1998] Lagrangian
    Reduction, the Euler-Poincare Equations, and Semidirect Products. Arnold
    volume II, AMS (to appear).

  8. Cendra, H., A. Ibort, and J .E. Marsden [1987] Variational principal fiber
    bundles: a geometric theory of Clebsch potentials and Lin constraints, J.
    Geom. Phys. 4 , 183 - 206.

  9. Cendra, H. and J.E. Marsden [1987] Lin constraints, Clebsch potentials and
    variational principles, Physica D 27 , 63-89.

  10. Cendra, H., J. E. Marsden and T .S. Ratiu [1998] Lagrangian reduction by
    stages. preprint.

  11. Channell, P. and G. Scovel [1990] Symplectic integration of Hamiltonian sys-
    tems, Nonlinearity 3 , 231 - 259.

  12. Channell, P. and C. Scovel [1991] Integrators for Lie-Poisson Dynamical Sys-
    tems, Physica D , 50, 80-88.

  13. Chern, S.J. and J.E. Marsden [1990] A note on symmetry and stability for
    fluid flows, Geo. Astra. Fluid. Dyn. 51 , 1-4.

  14. Chetayev, N.G. [1941] On the equations of Poincare. J. Appl. Math. Mech. 5 ,
    253 - 262

  15. Chandrasekhar, S. [1967] Ellipsoidal figures of equilibrium-an historical ac-
    count. Comm. on Pure and Math 20 , 251-265.

  16. Chandrasekhar, K. [1977] Ellipsoidal Figures of Equilibrium. Dover.

  17. Chorin, A.J, T.J.R. Hughes, J.E. Marsden, and M. McCracken [1978] Product
    Formulas and Numerical Algorithms, Comm. Pure Appl. Math. 31, 205-256.

  18. Chorin, A.J. and J .E. Marsden [1989] A Mathematical Introduction to Fluid
    Mechanics. Texts in Applied Mathematics, 4, Springer-Verlag, New York.

  19. Churchill, R.C., M. Kummer, and D .L. Rod [1983] On averaging, reduction
    and symmetry in Hamiltonian systems. J. Diff. Eqns. 49, 359-373.


/

Free download pdf