1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1
BIBLIOGRAPHY 417


  1. Clebsch, A. [1857] Uber eine allgemeine Transformation der hydrodynamis-
    chen Gleichungen, Z. Reine Angew. Math. 54 , 293-312.

  2. Clebsch, A. [1859] Uber die Integration der hydrodynamischen Gleichungen,
    Z. R eine Angew. Math. 56 , 1-10. ·

  3. Cushman, R., J. Hermans, and D. Kemppainen [1995] The rolling disc. in
    Nonlinear dynamical systems and chaos (Groningen, 1995), Progr. Nonlinear
    Differential Equations Appl., 19 , Birkhduser, Basel, 21-60.

  4. Cushman, R., D. Kemppainen, J. Sniatycki, and L. Bates [1995] Geometry of
    nonholonomic constraints. Rep. Math. Phys. 36 , 275-286.

  5. Cushman, R. and D. Rod [1982] Reduction of the semi-simple 1:1 resonance,
    Physica D 6 , 105-112.

  6. Cushman, R. and R. Sjamaar [1991] On singular reduction of Hamiltonian
    spaces, Symplectic Geometry and Mathematical Physics, ed. by P. Donato,
    C. Duval, J. Elhadad, and G.M. Tuynman, Birkhaiiser,114-128.

  7. David, D., D. Holm and M.V. Tratnik [1989] Integrable and chaotic polariza-
    tion dynamics in nonlinear optical beams. Physics Lett. A 137 , 355-364.

  8. David, D., D.D. Holm, and M. Tratnik [1990] Hamiltonian chaos in nonlinear
    optical polarization dynamics, Phys. Rep. 187 , 281-370.

  9. David, D., D.D. Holm [1990] Multiple Li e-Poisson structures, reductions, and
    geometric phases for the Maxwell-Bloch travelling wave equations, J. Non-
    linear Sci. 2, 241-262.

  10. Dellnitz, M., J .E. Marsden, I. Melbourne, and J. Scheurle [1992] Generic
    bifurcations of pendula. Int. Series on Num. Math. 104 , 111-122. ed. by G.
    Allgower, K. Bohmer, and M. Golubitsky, Birkhaiiser.

  11. Dellnitz, M. and I. Melbourne [1993] The equivariant Darboux theorem. Leet.
    Appl. Math. 29, 163-169.

  12. Dellnitz, M., I. Melbourne, and J.E. Marsden [1992] Generic bifurcation of
    Hamiltonian vector fields with symmetry, Nonlinearity 5 , 979-996.

  13. Ebin, D.G. and J.E. Marsden [1970] Groups of diffeomorphisms and the mo-
    tion of an incompressible fluid, Ann. Math. 92 , 102-163.

  14. Feng, K. [1986] Difference schemes for Hamiltonian formalism and symplect.ic
    geometry. J. Comp. Math. 4 , 279-289.

  15. Feng, K. and Z. Ge [1988] On approximations of Hamiltonian systems, J.
    Comp. Math. 6, 88-97.

  16. Feng, K. and M.Z. Qin [1987] The symplectic methods for the computation
    of Hamiltonian equations, Springer Lecture Notes in Math. 1297, 1 -37.

  17. Ge, Z., H .P. Kruse and J.E. Marsden [1996] The limits of Hamiltonian struc-
    tures in three-dimensional elasticity, shells and rods J. Nonlin. Sci. 6 , 19-57.

  18. Ge, Z., H.P. Kruse, J.E. Marsden and C. Scovel [1995] The Convergence
    of Hamiltonian Structures in the Shallow Water Approximation (Canadian
    Quart. of Appl. Math.), 3, 277-302.

Free download pdf