Clebsch, A. [1857] Uber eine allgemeine Transformation der hydrodynamis-
chen Gleichungen, Z. Reine Angew. Math. 54 , 293-312.
Clebsch, A. [1859] Uber die Integration der hydrodynamischen Gleichungen,
Z. R eine Angew. Math. 56 , 1-10. ·
Cushman, R., J. Hermans, and D. Kemppainen [1995] The rolling disc. in
Nonlinear dynamical systems and chaos (Groningen, 1995), Progr. Nonlinear
Differential Equations Appl., 19 , Birkhduser, Basel, 21-60.
Cushman, R., D. Kemppainen, J. Sniatycki, and L. Bates [1995] Geometry of
nonholonomic constraints. Rep. Math. Phys. 36 , 275-286.
Cushman, R. and D. Rod [1982] Reduction of the semi-simple 1:1 resonance,
Physica D 6 , 105-112.
Cushman, R. and R. Sjamaar [1991] On singular reduction of Hamiltonian
spaces, Symplectic Geometry and Mathematical Physics, ed. by P. Donato,
C. Duval, J. Elhadad, and G.M. Tuynman, Birkhaiiser,114-128.
David, D., D. Holm and M.V. Tratnik [1989] Integrable and chaotic polariza-
tion dynamics in nonlinear optical beams. Physics Lett. A 137 , 355-364.
David, D., D.D. Holm, and M. Tratnik [1990] Hamiltonian chaos in nonlinear
optical polarization dynamics, Phys. Rep. 187 , 281-370.
David, D., D.D. Holm [1990] Multiple Li e-Poisson structures, reductions, and
geometric phases for the Maxwell-Bloch travelling wave equations, J. Non-
linear Sci. 2, 241-262.
Dellnitz, M., J .E. Marsden, I. Melbourne, and J. Scheurle [1992] Generic
bifurcations of pendula. Int. Series on Num. Math. 104 , 111-122. ed. by G.
Allgower, K. Bohmer, and M. Golubitsky, Birkhaiiser.
Dellnitz, M. and I. Melbourne [1993] The equivariant Darboux theorem. Leet.
Appl. Math. 29, 163-169.
Dellnitz, M., I. Melbourne, and J.E. Marsden [1992] Generic bifurcation of
Hamiltonian vector fields with symmetry, Nonlinearity 5 , 979-996.
Ebin, D.G. and J.E. Marsden [1970] Groups of diffeomorphisms and the mo-
tion of an incompressible fluid, Ann. Math. 92 , 102-163.
Feng, K. [1986] Difference schemes for Hamiltonian formalism and symplect.ic
geometry. J. Comp. Math. 4 , 279-289.
Feng, K. and Z. Ge [1988] On approximations of Hamiltonian systems, J.
Comp. Math. 6, 88-97.
Feng, K. and M.Z. Qin [1987] The symplectic methods for the computation
of Hamiltonian equations, Springer Lecture Notes in Math. 1297, 1 -37.
Ge, Z., H .P. Kruse and J.E. Marsden [1996] The limits of Hamiltonian struc-
tures in three-dimensional elasticity, shells and rods J. Nonlin. Sci. 6 , 19-57.
Ge, Z., H.P. Kruse, J.E. Marsden and C. Scovel [1995] The Convergence
of Hamiltonian Structures in the Shallow Water Approximation (Canadian
Quart. of Appl. Math.), 3, 277-302.