1549055384-Symplectic_Geometry_and_Topology__Eliashberg_

(jair2018) #1

426 J. E. MARSDEN, MECHANICS, DYNAMICS, AND SYMMETRY



  1. O 'Reilly, 0, N .K. Malhotra and N.S. Namamchchivaya [1996] Some aspects
    of destabilization in reversible dynamical systems with application to follower
    forces, Nonlinear Dynamics, 10 , 63-87.

  2. Ortega, J.P. and T.S. Ratiu [1997a] Symmetry, Reduction, and Stability in
    Hamiltonian Systems preprint.

  3. Ortega, J.P. and T.S. Ratiu [1997b] Stability of relative equilibria. Symplectic
    block diagonalization. preprint.

  4. Ortega, J.P. and T.S. Ratiu [1997c] Persistance et differentiabilite de
    l'ensemble des elements critiques relatifs dans les systemes hamiltoniens
    symetriques C.R. Acad. Sci., 325 , 1107-1111.

  5. Ortiz, M. (1986). A note on energy conservation and stability of nonlinear
    time-stepping algorithms. Computers and Structures, 24 , 167-168.

  6. Ostrowski, J. [1996] Geometric Perspectives on the Mechanics and Control of
    Undulatory Locomotion, PhD dissertation, California Institute of Technology.

  7. Ostrowski and Burdick [1996] Gait kinematics for a serpentine robot, IEEE
    Int. Conj. on Robotics and Automation, 1294-9, Minneapolis, April, 1996.

  8. Ostrowski, J., J. W. Burdick, A. D. Lewis & R. M. Murray [1995] The me-
    chanics of undulatory locomotion: The mixed kinematic and dynamic case.
    IEEE Int. Conj. on Robotics and Automation, 1945-1951, Nagoya, Japan,
    May, 1995.

  9. Ostrowski, J., J.P. Desai, and V. Kumar. Optimal gait selection for nonholo-
    nomic locomotion systems. Submitted to the IEEE Conj. on Robotics and
    Automation, September 1996.

  10. Ovsienko, V .Y. and B .A. Khesin [1987] Korteweg-de Vries superequations as
    an Euler equation. Funct. Anal. and Appl. 21 , 329-331.

  11. P a trick, G. [1989] The dynamics of two coupled rigid bodies in three space,
    Cont. Math. AMS 97 , 315- 336.

  12. Patrick, G. [1992] Relative equilibria in Hamiltonian systems: The dynamic
    interpretation of nonlinear sta bility on a reduced phase space, J. Geom. and
    Phys. 9 , 111 - 119.

  13. Patrick, G. [1995] Relative equilibria of Hamiltonian systems with symmetry:
    linearization, smoothness and drift, J. Nonlinear Sci. 5, 373-418.

  14. Pedlosky, J. [1987] Geophysical Fluid Dynamics, 2nd Edition, Springer, New
    York.

  15. Pedroni, M. [1995] Equivalence of the Drinfeld-Sokolov reduction to a bi-
    Hamiltonian reduction. Lett. Math. Phys. 35 , 291-302.

  16. Pekarsky, S. and J.E. Marsden [1998] Point Vortices on a Sphere: Stability of
    Relative Equilibria. J. Math. Phys., (to a ppear).

  17. Poincare, H. [1885] Sur l'equilibre d 'une masse fl.uide animee d'un mouvement
    de rotation, Acta. Math. 7 , 259.

  18. Poincare, H. [1890] Theorie des tourbillons, Reprinted by Editions Jacques
    Ga bay, Paris.


I

Free download pdf